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Abstract 
 

Background: The ongoing COVID-19 pandemic has claimed over two and a half million lives 

worldwide so far. SARS-CoV-2 infection is perceived to be seasonally recurrent and a rapid 

non-invasive biomarker to accurately diagnose patients early-on in their disease course will 

be necessary to meet the operational demands for COVID-19 control in the coming years. 

Objective: To evaluate the role of exhaled breath volatile biomarkers in identifying patients 

with suspected or confirmed COVID-19 infection, based on their underlying PCR status and 

clinical probability.   

Methods: A prospective, real-world, observational study recruiting adult patients with 

suspected or confirmed COVID-19 infection. Breath samples were collected using a standard 

breath collection bag, modified with appropriate filters to comply with local infection 

control recommendations and samples were analysed using gas chromatography-mass 

spectrometry (TD-GC-MS). 

Findings: 81 patients were recruited between April 29th to July 10th, 2020, of whom 52/81 

(64%) tested positive for COVID-19 by RT-PCR. A regression analysis identified a set of seven 

exhaled breath features (benzaldehyde, 1-propanol, 3, 6-methylundecane, camphene, beta-

cubebene, Iodobenzene, and an unidentified compound) that separated PCR positive 

patients with an area under the curve (AUC): 0.836, sensitivity: 68%, specificity: 85%.  

Conclusions: GC-MS detected exhaled breath biomarkers were able to identify PCR positive 

COVID-19 patients. External replication of these compounds is warranted to validate these 

results. 

 

 

 

 

 



Introduction:  
 

The ongoing COVID-19 pandemic has claimed over two and a half million lives worldwide so 

far by March 2021 [1]. Rapid and accurate diagnostic testing of COVID-19 is invaluable to 

allow rapid isolation, healthcare pathways and access to definitive therapies. Final diagnosis 

of COVID-19 infection relies heavily on real-time-reverse-transcriptase polymerase chain 

reaction (rRT-PCR) positivity [2] as well as clinical symptoms, radiological features and blood 

biomarkers. The false-negative rate for SARS-CoV-2 RT-PCR remains highly variable with 

rates reaching up to 67% false negative within the first 5 days post exposure [3]. It is 

strongly recommended that PCR results are carefully interpreted and correlated with pre-

test probability, clinical symptoms, blood biomarkers, and digital pathology, particularly 

when used as basis for removing precautions put in place to prevent onward transmission.  

There are several tests that offer increased turnaround at the expense of reduced 

sensitivity, these include Rapid Antigen Tests and Lateral Flow Assays [4, 5]. The trade off in 

sensitivity is justified when mass high throughput testing may be required at frequent 

intervals e.g. at airports, schools and hospitals, however, this has important implications for 

patients, healthcare professionals, and COVID-19 policymakers, highlighting the imperative 

of developing early, non-invasive, more sensitive diagnostic tools.  

Exhaled breath analysis has attracted notable scientific and clinical interest in recent years. 

Volatile organic compounds (VOCs) have the potential to mirror various metabolic processes 

both locally within the respiratory system and systemically, via blood circulation [6, 7]. VOCs 

have been utilised as diagnostic, prognostic and treatment response biomarkers for various 

respiratory illness, including infections [8-12]. The rapid, cost effective and non-invasive 



nature make VOCs a strong candidate as a potential COVID-19 biomarkers, substantiated by 

preliminary studies highlighting its diagnostic potential [13, 14].  

In this pilot study, we evaluated exhaled breath volatile compounds as potential biomarkers 

for COVID-19 infection, based on the underlying PCR status and clinical probability.  

 

Materials and methods:  
 

Study design and participants: 

 

This was a prospective, real-world observational study conducted at Leicester, United 

Kingdom. The National Research Ethics Service Committee East Midlands approved the 

study protocol (REC number: 16/LO/1747). Patients admitted to hospital with suspected 

COVID-19 infection were approached and provided informed consent. Those who agreed to 

take part, provided a breath samples within 24 hours of admission to hospital and samples 

were analysed using thermal desorption coupled gas chromatography-mass spectrometry 

(TD-GC-MS).  

All participants underwent testing for SARS-CoV-2 using PCR of nasopharyngeal swab, as 

part of the local streaming and clinical care pathways.  

 

Clinical probability: 

In addition to PCR testing participants were classified by clinical probability of COVID-19 

infection. This was with the aim of capturing patients with false negative PCR swabs, or 

those with delayed presentation who had pneumonitis but no longer shedding viral load.  



We classified the study subjects as high clinical probability of SARS-CoV-2 infection if they 

fulfilled either 2 major or 1 major and 3 minor diagnostic criteria (Table 1). 

These criteria were contrived by a panel of senior clinicians, supported by peer-reviewed 

published evidence [15-21].  

Exhaled breath sample collection: 

Breath sampling was optimised to minimise cross-contamination and infection risk. The 

breath sampling apparatus included a mouthpiece with integrated HEPA filter (GVS) and a t-

piece with directional valves (Intersurgical), connected to a polypropylene shutoff valve with 

1/4” push connections (RS Components) via a 22F-10 mm connector (Intersurgical). The 

valve was connected on the other side, via a piece of 1/4” PFA tubing of minimal length, to 

the large port of a 3 L Tedlar bag with dual stainless steel fittings with a piece of pre-

conditioned silicon tubing surrounding the fitting to ensure a secure connection. The tubing 

and shut-off valves were pre-conditioned by heating for 4 hours at 60°C and the Tedlar bags 

flushed with nitrogen and vacuum evacuated six times prior to sampling to reduce 

background VOCs. The pre-assembled, single-use device was handed to the patient at 

bedside and patients were asked to perform tidal breathing, opening the shut-off valve 

when providing the sample and closing it again once the bag was inflated. Average sampling 

time was less than a minute.  

The mouthpiece and all connections above the shut-off valve were disconnected and 

disposed on the ward. The remaining bag and valve assembly were wiped down and double 

bagged before being taken immediately for loading onto sorbent tubes in triplicate 

(Carbograph 1TD, Markes International). The unused fitting on the Tedlar bag was 



connected to a handheld Elf pump (Escort® Elf, Sigma Aldrich, Dorset, UK) using sealed 

Tygon tubing, and the sample within the bag drawn through the sorbent tube under 

negative pressure at a flow rate of 0.5 L/min for two minutes, loading a total of 1 L of breath 

onto each of the three sorbent tubes. The sorbent tubes were sealed with brass caps 

(Swagelok) and stored in the fridge for up to 48 hours before being transferred to the lab for 

analysis. Blank samples were taken from Tedlar bags filled with air (BTCA grade, BOC) at the 

beginning of each sampling week.  

 

Sample analysis:  

All sample tubes were loaded with internal standard (0.6 μL of 20 μg/mL toluene-d8, 

phenanthrene-d10 (Sigma Aldrich) and n-octane-d18 (Cambridge Isotope Laboratories) 

mixture in methanol (Sigma Aldrich) in a stream of nitrogen at a flow rate of 100 mL/min for 

2 min, purging off the excess solvent.  

  

Reference standards: 

A 100 μg/mL multi component air standard (p/n 4M7537-U Sigma Aldrich, Dorset, UK) was 

used to monitor instrument performance and for peak identity confirmation, and was 

diluted in methanol to give a final concentration of 10 μg/mL. 1 μl of standard was loaded 

onto sorbent tubes into a stream of N2 (zero grade, BOC) at 100 ml/min and purged for 1 

minute, before addition of internal standard as described above. Benzaldehyde, 1-propanol 

and octanal (Sigma Aldrich) and SPEX Certiprep Can-Terp Mix (Fisher Scientific, 

Loughborough, UK) standards were diluted in the same way and loaded onto tubes to 

confirm the identity of additional selected peaks.  



A reference solution used to monitor retention behaviour was prepared from a 40 mg/L C8-

C20 saturated alkanes certified reference material (Sigma Aldrich) combined with a 

2000 μg/mL aromatics calibration standard (NJDEP EPH 10/08 Rev.2, Thames Restek). The 

mixture was diluted in methanol (SupraSolv grade, Sigma Aldrich) to give final 

concentrations of 10 μg/mL and 20 μg/ml for n-alkanes and aromatics, respectively. 

TD-GC-MS Analysis 

GC-MS analysis was carried out on an Agilent 7820A with 5977B MS (Agilent Technologies 

Ltd, Stockport, UK). A DB-5MS capillary column 60 m x 0.25 mm x 0.25 μm (from Agilent 

Technologies) was used with a 1 ml/min column flow rate using helium (N6.0, BOC) as a 

carrier gas. The GC conditions were as follows: the column starting temperature was 35 °C 

which was then raised to 130 °C at 2.8 °C/min, to 220 °C at 4 °C/min and then to 320°C at 25 

°C/min, where it was held for a further 10 min.  

The mass spectrometer was operated in full scan mode from 40-350 amu. The transfer line 

to the mass spectrometer was heated to 300 °C; the source temperature was maintained at 

230 °C and the quadrupole at 150 °C. 

The instrument was interfaced with a Markes TD-100 xr thermal desorption unit (Markes 

International Ltd, Llantrisant, UK). Tubes were pre-purged with carrier gas for 1 min at 

50 mL/min and then desorbed at 300 °C for 5 min with a flow of 50 mL/min onto a 

‘hydrophobic, general purpose’ trap (Markes International Ltd, Llantrisant, UK) held at 

−10 °C. The trap was then purged for 2 min at 2 mL/min before being heated at the 

maximum heating rate to 300 °C for 5 min, with a spit flow of 2 ml/min. 



Data analysis:   

A custom library was built in Unknowns (Agilent Technologies) from random selection of ten 

patient samples, covering all patient groups, based on their age, PCR status and clinical 

probability. From this library a method was built in MassHunter Quantitative analysis 

(Agilent Technologies) using the base peak as quantifier and two qualifier ions for identity 

confirmation. All peaks were manually screened to ensure correct integration, and siloxane 

peaks were removed prior to further analysis. Peaks were removed if <60% of samples did 

not exceed the mean blank integrated peak area plus three standard deviations. Three 

patient samples were discarded owing to the high levels of exogenous contamination.  

 

Statistical analysis 

Feature selection was performed by applying LASSO regression to the final VOCs peak table 

with the dependent variable as PCR status first, then clinical probability, extracting a set of 

relevant features for each model.   

A logistic regression model was then fitted with the dependent variable as PCR status first, 

then clinical probability; with the independent variables set as the respective relevant 

features selected by the LASSO model above. Partial Least Squares Discriminant Analysis 

(PLS-DA) and Principal Component Analysis (PCA) were then applied to the two sets of 

features, with the dependent variable as SARS-CoV-2 PCR status and clinical probability 

respectively. 



All analyses were performed using R 4.0.0 [22]. LASSO regression was performed using 

glmnet [23], PCA was performed using the mixOmics library [24], and PLS-DA was performed 

using the ropls library [25].  

 

Results 

From April 29th to July 10th, 2020, a total of 81 adult participants, mean age (SD): 56.5 

(15.1), 59% males, with suspected or confirmed COVID-19 infection were recruited. Details 

of all study participants and their clinical characteristics are detailed in (Table 2).  

 

Identification of SARS-CoV-2 in breath by PCR status:  

52 (64%) of the participants had a positive PCR test at the time of admission (Table 2). 

A set of seven features were extracted that had non-zero regression coefficients in at least 

70 out of 100 runs of 10-fold cross validation of the LASSO model. Compound identities 

were confirmed using the Metabolomics Standards Initiative (MSI) [26]. These were: the 

oxygenates benzaldehyde, 1-propanol (both MSI level 1); a hydrocarbon, 3,6-

dimethylundecane (MSI level 2); and two terpenes, camphene and beta-cubebene (MSI 

level 1 and 2 respectively). Iodobenzene was also extracted, which is likely of exogenous 

origin, and a compound that was unable to be identified owing to co-elution with a much 

larger peak. 



The distribution of the first discriminant function and the first two principal components are 

shown in (Figure 1a-b). Wilcoxon test was applied to the first discriminant function and the 

first PCA scores (Figure 1c-d). 

The AUC for the first discriminant function score was 0.83 (95% CI: 0.74-0.92), sensitivity 

was 0.68 (95% CI 0.55-0.80), specificity was 0.85 (95% CI 0.72-0.98), positive predictive value 

(PPV) was 0.89 (95% CI 0.79-0.99) and negative predictive value (NPV) was 0.60 (95% CI 

0.44-0.75) (Figure 1e). The AUC for the first PCA was 0.79 (95% CI: 0.69-0.90), sensitivity was 

0.70 (95% CI 0.57-0.82), specificity was 0.78 (95% CI 0.63-0.93), PPV was 0.85 (95% CI 0.74-

0.96) and NPV was 0.59 (95% CI 0.43-0.75) (Figure 1f). 

 

Identification of SARS-CoV-2 in breath by clinical probability:  

55/81 (68%) subjects were classified as ‘high clinical probability’ for COVID-19 of whom 

38/55 (69%) have subsequently had positive PCR results.   

A set of 11 features were extracted that had non-zero regression coefficients in at least 10 

out of 100 runs of 10-fold cross validation of the LASSO model. The feature selection 

threshold of 10 out 100 runs of 10-fold cross validation is weak, suggesting that these 

features are less likely to be stable.   

The 11 features were a mixture of hydrocarbons - cyclohexene (identified to MSI level 2), 3-

heptene (MSI level 2), pentadecane (MSI level 1) and 4-ethenyl-1,2-dimethyl-benzene, (MSI 

level 2); oxygenates - octanal (MSI level 1), benzaldehyde (MSI level 1), 2,2-dimethyl 1-



propanol (MSI level 2), 1-propanol (MSI level 1), acetoin (MSI level 2) and acetic acid methyl 

ester (MSI level 2); and the chloro-carbon tetrachloroethylene (MSI level 2).    

The distribution of the first discriminant function and the first two principal components are 

shown in (Figure 2a-b). Wilcoxon test was applied to the first discriminant function and the 

first PCA scores (Figure 2c-d). 

The AUC for the first discriminant function score was 0.65 (95% CI: 0.52-0.78), positive 

predictive value (PPV) was 0.82 (95% CI 0.70-0.95) and negative predictive value (NPV) was 

0.41 (95% CI 0.27-0.56) (Figure 2e). The AUC for the first PCA was 0.55 (95% CI: 0.69-0.90), 

PPV was 0.81 (95% CI 0.69-0.92) and NPV was 0.44 (95% CI 0.28-0.60) (Figure 2f). 

 

Discussion:  
 

In this pilot study we evaluated the validity of using exhaled breath VOCs in identifying 

patients with COVID-19 infection based on their underlying PCR status and clinical 

probability, using GC-MS. This study provided proof of concept for exhaled breath 

measurement in patients with severe COVID-19 infection, while maintaining infection-

control standard precautions. Furthermore, it demonstrated that VOC biomarker profiling 

can identify COVID-19 patients based on their underlying PCR status with good accuracy. 

This study is the first to incorporate GC-MS, the gold standard in breath/VOC discovery 

analysis, recruiting the largest number of COVID-19 patients to date using an advanced 

offline technology. The high analytical standards applied in our study and the increased peak 

capacity resulted in the detection of 389 feature that exceed background levels by 3 

standard deviations in 60% of samples.  



With the current level of understanding of COVID-19 pathophysiology, there are several 

indicators that a SARS-CoV-2 infection would be detectable in the exhaled breath VOC 

pattern. The disease has been reported to cause a systemic inflammatory response [27], 

which supports the hypothesis that metabolism is influenced in more than one way and the 

distribution of breath volatile metabolites is substantially changed [28].  

The discriminatory features identified in our study belonged to various chemical groups and, 

with the exception of the unidentified peak, were present in higher concentrations in the 

breath of PCR positive patients. These included 1-propanol, a previously observed marker of 

bacterial pneumonia [29], lung cancer [30, 31] and asthma [10]; and 3,6-dimethylundecane 

a likely derivative of lipid peroxidation and potentially background air [32]. The 

concentrations in breath of numerous alkanes have been reported to have altered levels in 

a range of respiratory diseases including asthma [10, 33] and COPD [34].  

Benzaldehyde is normally considered to be an exogenous VOC and is ubiquitous in indoor 

air. However, studies have shown that it can be useful as a breath biomarker [35, 36]. The 

two terpenes, camphene and beta-cubebene, are also generally considered to be exogenous 

in nature, however, their differential metabolism within certain disease groups has shown 

promising relevance as a diagnostic aid [34, 37]. 

 

Two other published studies examined the diagnostic potential of volatile breath markers in 

COVID-19. Ruszkiewicz et al [13] were able to differentiate COVID-19 patients from other 

cardio-respiratory conditions using a compact GC coupled to ion mobility spectrometry (GC-

IMS) in 31 COVID-19 patients from a total of 98 participants across two centres. Multivariate 

analysis identified 7 VOCs from a total of 80 features across all samples, including aldehydes 

(ethanal, octanal), ketones (acetone, butanone), and methanol as the main compounds 



driving this separation. In an attempt to validate these compounds in our cohort, a logistic 

regression model was fitted with the dependant variable as PCR positive/negative and the 

independent variables as the identified compounds from the Ruszkiewicz paper. None of the 

identified compounds held any significant discriminatory value in our cohort. This was not 

unexpected given the inherent differences in recruitment strategy, sampling procedure, 

ionisation selectivity and sensitivity of the two techniques, without prior optimisation. 

Grassin-Delyle et al [38] used real-time, online, proton transfer reaction time-of-flight mass 

spectrometry (PTR-MS) to measure breath VOCs of 40 ventilated patients with severe 

COVID-19 or non-COVID-19 acute respiratory distress syndrome, diagnosed by PCR. The 

prominent VOCs observed in COVID-19 patients were assigned to methylpent-2-enal, 2,4-

octadiene, 1-chloroheptane and nonanal, however, the lack of chromatographic separation 

in this technique makes definitive chemical speciation and subsequently, meaningful study 

comparison, difficult to achieve.  

 

While RT-PCR-SARS-CoV-2 remains the most widely used COVID-19 diagnostic test, its 

limited sensitivity, particularly in the early course of the disease, illustrates its inadequacy as 

an isolated COVID-19 diagnostic test [39-41]; which highlights the importance of 

incorporating clinical probability as an essential component in making a definitive diagnosis. 

Nonetheless, the peculiarities of SARS-CoV-2 infection do not allow for the development of 

undisputed clinical criteria for a COVID-19 diagnosis, making our VOC biomarker results, 

based on clinical probability alone, difficult to interpret.  

 



The diagnostic value of breath VOCs is expectedly limited in high prevalence cohorts with 

increased pre-test probability. However, once appropriately validated in a low COVID 

prevalence cohort, exhaled breath VOCs promise to be a useful tool in ruling out COVID-19 

infection at the point of admission. This would facilitate extrication from isolation spaces, 

preserving infection control resources and preventing onward nosocomial transmission.   

 

There are limitations associated with this study that must be taken into consideration when 

interpreting the findings. Firstly the sample size was relatively small: patient sampling during 

the first wave was largely dependent on clinical practicality and increasing the sample size 

was not possible owing to reduced hospital admissions in response to Public Health England 

recommendations. Secondly, the reference standard test used was RT-PCR: whilst  PCR was 

the best available diagnostic test at the time of testing it will have still resulted in some 

false-negative cases. It is also worth noting that with relatively small-size and complex 

datasets, overfitting can lead to poor model performance however, to mitigate for this, 

feature selection was carried out by the application of LASSO regression to the peak table. 

External replication of these results is needed in similar populations with suspected severe 

COVID-19 infection to validate these findings. 

Conclusions:  

This proof-of-concept study demonstrated the potential role of breath testing in COVID-19 

diagnostics. The next stage is a large-scale diagnostic accuracy study in a population with a 

more realistic prevalence of COVID-19 infection to determine the clinical applicability of 

such a test.  



 

Table 1: SARS-CoV-2 infection diagnostic criteria  

Major criteria Minor criteria 

Presence of new bilateral peripheral, 

middle and lower pulmonary infiltrates on 

chest X-ray 

Low blood Lymphocyte count below the 

lower limit of normal (<1.0 x109/L) 

New continuous cough, high temperature, 

and loss of sense of smell and or taste 

Low blood Eosinophil count below the 

lower limit of normal (<0.04 x109/L) 

 High C-reactive protein level (>50 mg/L) 

 New oxygen requirements   

 Contact with confirmed COVID-19 

household 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

  All patients PCR positive PCR negative 

 (N=81) (N=52) (N=29) 

 Baseline demographics    

Age (years)  - mean ± (SD) 56.5 (15.1) 53.6 (14.5) 61.7 (14.9) 

Male – number/total (%) 48/81 (59%) 29/52 (55%) 19/29 (65%) 
Ethnicity – Caucasian – number/total (%) 42/81 (51%) 19 /52(36%) 23/29 (79%) 

Current smoker – number (%) 7/81 (8.6%) 4/52 (7%) 3/29 (10%) 

Height (meters) -  mean (SD) 1.68 (0.08) 1.66 (0.08) 1.72 (0.07) 

Weight (kilograms) -  mean (SD) 88.6 (25.8) 87.7 (24.9) 90.2 (27.7) 
BMI - mean (SD) 31.0 (8.1) 31.6 ± (7.7) 30.1 (8.7) 
    

Co-morbidities    

Diabetes – number (%) 21/81 (25.9%) 14/52 (27%) 7/29 (24%) 

Chronic pulmonary disease – number (%)  13/81 (16.0%) 5/52 (9%) 8/29 (27%) 

Cardiac disease – number (%)  6/81 (7.4%) 5/52 (9%) 1/29 (3%) 

    

Admission observations    

Temperature (>37.8c) no. /total no. (%) 25/81 (30.8%) 15/52(28%) 10/29 (34%) 

Respiratory rate (>25/min) no. /total no. (%) 13/81 (16.0%) 9/52 (17%) 4/29 (13%) 

Requiring supportive oxygen no. /total no. (%) 38/81 (46.9%) 30/52 (57%) 8/29 (27%) 

    

 Blood biomarkers    

 Serum lymphocyte count (109/L) – median (Q1-Q3) 0.98 (0.7 - 
1.3) 

1.0 (0.7-1.3) 0.8 (0.7-1.2) 

 Serum eosinophil count (109/L)  median (Q1-Q3) 0.02 (0.01 – 
0.08) 

0.02 (0.01-
0.06) 

0.06 (0.02-0.1) 

 C-reactive protein (mg/dl)  median (Q1-Q3) 71.0 (41.5 – 
152.5) 

68.5 (47-119) 77.0 (32-228) 

    

Imaging    
Presence of bilateral consolidation - no. /total no. 
(%) 

67/81 (82%) 47/52 (90%) 20/29 (69%) 

    

Length of hospital stay  mean  (SD) 5.9 (5.4) 6.5 (6.3) 5.0 ± (3.7) 

    

30 days mortality - number (%)  9 (11%) 7 (8%) 2 (2.4%) 

Table 2: clinical characteristics of adult patients recruited with suspected or confirmed COVID-19 

infection. 



 

 

Figure legends: 

 

Figure 1: 

 1(a): Partial Least Squares Discriminant Analysis (PLS-DA) on the seven extracted breath features 

with the response variable set as PCR status. 

1(b): Principal Component Analysis (PCA) on the seven extracted breath features with the response 

variable set as PCR status. 

1(c): Wilcoxon test applied to the first discriminant function. 1(d): Wilcoxon test on the first PCA 

scores 

1(e): Receiver operating characteristic (ROC) curve for the discriminant score. The area under the 

curve (AUC) for the first discriminant function score: 0.83 (95% CI: 0.74-0.92), sensitivity: 0.68 (95% 

CI 0.55-0.80), specificity: 0.85 (95% CI 0.72-0.98), positive predictive value (PPV): 0.89 (95% CI 0.79-

0.99), and negative predictive value (NPV): 0.60 (95% CI 0.44-0.75). 

1(f): ROC curves for first principal component score (PC1). The AUC for the first PCA: 0.79 (95% CI: 

0.69-0.90), Sensitivity: 0.70 (95% CI 0.57-0.82), Specificity: 0.78 (95% CI 0.63-0.93), PPV: 0.85 (95% CI 

0.74-0.96), and NPV: 0.59 (95% CI 0.43-0.75). 

 

Figure 2: 

 2(a): Partial Least Squares Discriminant Analysis (PLS-DA) on the eleven extracted breath features 

with the response variable set as clinical probability. 

2(b): Principal Component Analysis (PCA) on the eleven extracted breath features with the response 

variable set as clinical probability. 

2(c): Wilcoxon test applied to the first discriminant function. 2(d): Wilcoxon test on the first PCA 

scores 

2(e): The AUC for the first discriminant function score, based on clinical probability: 0.65 (95% CI: 

0.52-0.78), PPV: 0.82 (95% CI 0.70-0.95), and NPV: 0.41 (95% CI 0.27-0.56). 

2(f): The AUC for the first PCA was 0.55 (95% CI: 0.69-0.90), PPV was 0.81 (95% CI 0.69-0.92) and 

NPV was 0.44 (95% CI 0.28-0.60) 
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