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Abstract 

Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is 

ill-defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The 

objective of this pilot study was to explore the utility of breath collection and analysis 

methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles 

present in breath. Five male Yorkshire mix swine were studied and ARDS was induced utilizing 

both direct and indirect lung injury. An automated portable gas chromatography device developed 

in-house was used for point of care breath analysis and to monitor swine breath hourly, starting 

from the initiation of the experiment until the development of ARDS, which was adjudicated based 

on the Berlin criteria at the breath sampling points and confirmed by lung biopsy at the end of the 

experiment. A total of 67 breath samples (chromatograms) were collected and analyzed. Through 

machine learning, principal component analysis, and linear discrimination analysis, seven VOCs 

biomarkers were identified that distinguished ARDS. These represent seven of the nine biomarkers 

found in our breath analysis study of human ARDS corroborating our findings. We also 

demonstrated that breath analysis detects changes 1-6 hours earlier than the clinical adjudication 

based on the Berlin criteria. The findings provide proof of concept that breath analysis can be used 

for the identification of early changes associated with ARDS pathogenesis in swine. Its clinical 

application could provide intensive care clinicians with a non-invasive diagnostic tool for early 

detection and continuous monitoring of ARDS. 

 

Keywords: Lung injury, Volatile organic compound, Gas chromatography, Large animal model, 
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1. INTRODUCTION 

In the past 50 years acute respiratory distress syndrome (ARDS) remains a significant public 

health threat with an annual incidence rate of >200,000 cases in the United States and globally 

with an annual rate of 13.5 cases per 100,000 population [1]. Early detection and trajectory 

monitoring of ARDS is critical to its treatment [2-5]. Despite the enormous impact on human 

health, ARDS remains ill-defined, and little progress has been made on advancing novel diagnostic 

and prognostic tools. 

The most common ARDS risk model is Lung Injury Prediction Score (LIPS). However, it has 

a low ability to predict disease onset [6, 7]. The clinical diagnosis based on the Berlin criteria 

shows a moderate correlation with real-time and post-mortem tissue pathological findings [8-10], 

but does not account for the critical, dynamic inflammatory processes that participate in ARDS. 

Furthermore, presently, there are no predictive clinical biomarkers of ARDS pathogenesis. This 

hinders the ability of clinicians to detect the early or pre-clinical onset of ARDS. 

Breath contains hundreds of volatile organic compounds (VOCs), some of which may provide 

information about the inflammatory state of the lungs as ARDS develops and progresses. 

Therefore, breath analysis can potentially be very useful for non-invasive ARDS detection and 

continuous monitoring [2, 3, 11-14]. In a previous study, we predicted ARDS in human subjects 

with high accuracy when compared to clinical adjudication based on Berlin criteria [13]. The study 

was limited by the absence of confirmatory, histopathologic evidence of ARDS (i.e., diffuse 

alveolar damage). Second, assessment of the rate of change in specific breath compound (e.g., 

trajectory monitoring), which may be vital for timely clinical and therapeutic decision-making, 

was limited. 

In our present work, we overcame the aforementioned limitations by using a newly developed 

and optimized the swine model of ARDS that accurately recapitulates the human conditions [15]. 

Animal models, particularly large animals such as swine, have been used in biomedical research 

for decades because of their anatomical and physiological similarities to humans [16-18]. They are 

also an ideal species for modeling the inflammatory response to ARDS [19, 20]. An automated 

portable GC developed in-house was employed to study swine breath to better understand the 

pathophysiology and the utility of breath analytes as predictors of ARDS. Each swine was 

monitored hourly, starting from initiation of the experiment until the development of clinically 

defined ARDS. This approach provided us the opportunity to monitor VOCs during the 



development of ARDS as well as dynamic changes that may be associated with it. Lung pathology 

was assessed at the end of the experiment to confirm the presence of diffuse alveolar damage.  

 

2. MATERIALS AND METHODS 

2.1 Animal Preparation and Induction of Lung Injury 

We used a recently-described swine model of ARDS that uses clinically-relevant exposures 

(sepsis, hyperoxia, volutrauma, and aspiration) and faithfully recapitulates the physiologic, 

radiographic, and histopathologic features of ARDS [15]. As reported recently, this model fulfills 

both clinical criteria (Berlin Definition) [9] and experimental criteria for animal models of ARDS 

[21].  

Five male Yorkshire mix swine weighing 45 (±2) kg were used in the study. The Institutional 

Animal Care and Use Committee (IACUC) at the University of Michigan approved the study. All 

procedures were carried out in compliance with the university's institutional standards for care and 

use of laboratory animals in accordance with NIH guidelines [22]. Detailed physiologic data 

regarding these animals has previously been published [15]. 

Animals were fasted overnight with libitum access to water and on the day of the experiment, 

anesthesia was induced. Animals were intubated and mechanically ventilated to maintain a 

baseline end-tidal CO2 level between 35-45 mmHg (Biopac Systems Inc., Goleta, CA). At the end 

of surgical instrumentation, animals were transitioned to total intravenous anesthesia using a 

combination of propofol, fentanyl, and midazolam. The anesthesia level was monitored for the 

experiment's duration by assessing corneal reflex, jaw tension, and hemodynamics, including 

blood pressure, heart rate, and respiratory rate. More details for animal preparation can be found 

in [15, 23].  

Animals were subjected to systemic infection via an injection of E. Coli into the kidney 

parenchyma (3.5 x 1011 CFU Strain CFT073 E. Coli in a total of approximately 5 mL at a rate of 

0.333 mL/min) as previously described [15, 23]. Lung injury was induced utilizing a combination 

of volume-trauma (tidal volumes of 15 mL/kg), hyperoxia (100% FiO2), and the instillation of 

gastric particles (1-2 mL/kg) into the airways via bronchoscope [24]. Following the induction of 

lung injury, animals were continuously monitored for up to 16 hours at which point the experiment 

was terminated and the animal was euthanized.   



The adjudication of the time points at which ARDS was present was done using the Berlin 

criteria [9, 10], which uses the ratio of partial pressure of arterial O2 (PaO2) to the fraction of 

inspired oxygen (FiO2) and the chest radiograph assessed at regular intervals during experiments. 

The final determination of ARDS was confirmed by lung pathology determined by a pathologist 

blinded to the specifics of the induced injury. Figures S1 shows the P/F ratios for all five swine 

animals. Radiographs and pictures of the lungs taken at the end of the experiment are shown 

elsewhere [15]. 

 

2.2. Exhaled Breath Collection and Analysis 

We used an automated, portable GC device to sample and analyze the breath from each swine 

before the induction of lung injury and every hour thereafter for up to 16 hours or until the animal 

expired, whichever occurred earlier. The GC device was connected to the expiratory port of the 

ventilator tubing via a T-piece and 1-m long polytetrafluoroethylene (PTFE) tubing (0.64 cm i.d.), 

as shown in Figure 1. The same GC device was used for breath sampling and analysis for all five 

animals. For each breath measurement, the breath sample was collected into a thermal desorption 

tube installed in the GC device at a rate of 70 mL/min, and then analysis was performed. Finally, 

device cleaning was performed to ensure that no residues were left from the previous run. The 

details of breath sampling and analysis processes are given in SI 1.2. The total assay time was 30 

minutes, including 5 minutes of sample collection at 70 mL/min, 5 minutes of desorption/transfer, 

10 minutes of separation, and 10 minutes of cleaning. 

The raw chromatograms were first pre-processed for noise reduction, curve smoothing, 

alignment with the reference chromatogram, and peak assignment. After pre-processing, the area 

of each peak was calculated and normalized by the entire area under the chromatogram curve [13, 

25]. Through machine learning, principal component analysis (PCA), and linear discriminant 

analysis (LDA) [13, 17, 18], a sub-set of chromatographic peaks were selected as the biomarkers 

for the discrimination of ARDS. The details about the GC system and the algorithm used in data 

analysis can be found in [13, 25-27]. 

Traditional mass spectrometry (MS) was performed to identify the VOCs present in swine 

breath. The swine’s breath at the experiment termination or animal death, whichever occurred first, 

was collected into a 3 L Tedlar bag. Then it was assayed by our GC coupled to a Thermo Scientific 



Single Quadrupole Mass Spectrometer (ISQTM Series) and the results were analyzed using 

ChromeleonTM 7 Software. 

 

3. RESULTS 

Figure 2 shows a representative chromatogram of swine breath. A total of 67 breath 

chromatograms from the five swine were collected and analyzed, including 34 pre-ARDS 

chromatograms and 33 chromatograms after development of ARDS (as adjudicated by the Berlin 

criteria during the experiment and confirmed by lung biopsies at the end of the experiment). There 

were approximately 60-70 peaks in each individual chromatogram. Collectively, there were a total 

of 78 different peaks.  

 

3.1. Candidate Biomarkers of ARDS  

For biomarker discovery, we used 40 out of 67 breath chromatograms as the training set, 

among which 20 were pre-ARDS and 20 were ARDS. The 20 pre-ARDS data were from the breath 

samples taken at the 0th hour (before lung injury was induced), and the 1st, 2nd, and 3rd hour after 

the induction of lung injury, up until the P/F ratio fell below 300. By doing this, we ensured that 

the swine had not developed ARDS, which was confirmed by clinical adjudication based on the 

Berlin criteria. The 20 ARDS chromatograms were from the breath samples taken in the last 4 

hours of the experiment for Swine #2, #4, and #5. Swine #1 died within 8 hours and we had only 

the last two data points adjudicated as ARDS, which are included in the training set. For Swine 

#3, which died after 16 hours, we used the samples taken in the last 6 hours in the training set. The 

reason to use the samples taken 4 - 6 hours prior to the animal death is two-fold. First, it is highly 

likely that the swine had developed ARDS at this stage (4-6 hours prior to death), as confirmed by 

clinical adjudication. Second, it was necessary to make the total number of ARDS in the training 

set to be 20 (i.e., equal to the number of pre-ARDS controls). The remaining 27 chromatograms 

(14 pre-ARDS and 13 ARDS, as adjudicated by the Berlin criteria) were used as the testing set. 

They were obtained between the 3rd hour after the lung injury and 4-6 hours prior to death. 

Through machine learning, PCA, and LDA, seven VOCs (see Table 1) were identified as the 

candidate biomarker set, which yielded a classification accuracy of 92.5% (Table 2) for the training 

set and the largest boundary distance in the PCA plot. Interestingly, these seven analytes are the 

same as seven of the nine biomarkers found in our previous breath analysis that predicted human 



ARDS. The similarities in the biomarker set further validate our findings in humans and underscore 

the clinical relevancy of the swine model to simulate the human conditions. We also examined the 

other two VOCs, 2,4-dimethylpentane and methylcyclohexane (see Table 1), which differentiated 

human ARDS, to see whether they can be added to the current the 7-analyte biomarker set. The 

results were neutral, i.e., adding one of them or the combination of both does not change 

classification accuracy. This may be due to the limited number of swine and the breath samples 

used in this study. In contrast, the addition of other peak(s) to the current biomarker set resulted in 

decreased accuracy (Table S1). 

In Figure 3, we plotted the normalized peak area for each identified analyte versus time after 

the induction of lung injury of all five swine to assess the trend in analyte signal during the 

pathogenesis of ARDS. Of these, 2-dimethyl pentane and 3-methylheptane increased over time, 

while the other five compounds decreased. 

Figure 4 shows the PCA scores for the 40 data points in the training set using the seven 

discriminating analytes, giving an accuracy of 92.5%. The corresponding statistics is summarized 

in Table 2. The data demonstrate that pre-ARDS and ARDS are well separated and that the 

distribution of the pre-ARDS data points is much more clustered than that for the non-ARDS 

human subjects in our previous study [13], perhaps indicative of the homogeneity of the swine 

model in comparison with the human subjects. Figures S2 and S3 show the PCA scores for the 

testing set and for all the data sets, respectively. The corresponding accuracy decreases 

significantly compared to the training set (see Table 2). However, this does not necessarily indicate 

that breath analysis fails. Instead, it suggests the limitation of the Berlin criteria, since breath 

analysis can detect changes consistent with the development of ARDS approximately 3 hours 

earlier than the clinical adjudication and all of the 27 chromatograms in the testing set were 

intermediate points obtained during the development of ARDS. See detailed explanation later. 

The cross-validation was also performed, where the original training datasets were divided into 

5 cross-validation models. The five models yielded an overall classification accuracy of 92.5±1.5% 

(and 90.5±16.2% for the testing set), which indicates the robustness of the model. The statistics of 

the five models is presented in Table S3. 

  



 

 

3.2. Dynamic Response of Swine Breath 

The time trajectory monitoring of disease is critical for guided therapy of ARDS. In our 

previous study with human subjects, we did not continuously monitor subjects through their entire 

course so development of an ARDS trajectory was not possible. In contrast, in the current swine 

experiment we were able to perform a sequential hourly monitoring of the dynamic change of 

swine ARDS from the very beginning (prior to the induction of lung injury) to the end of the 

experiment (death of ARDS), as shown in Figure 5 where each swine moved from pre-ARDS to 

ARDS. The first data point (the 0th hour, before the induction of lung injury) and the last data point 

(just before the death of ARDS) are well separated and far from the boundary line. For all the five 

swine, as the experiment progresses, the PCA trajectory moves from the 0th hour (i.e., the pre-

ARDS region) towards the boundary line, then reaches the ARDS region, and eventually moves 

farther away from the boundary line as the severity of ARDS increases. The only exception is 

“3.10” (Swine #3 at the 10th hour), which shows movement to a decreased state of severity. This 

could, however, be caused by errors in breath measurement.  

 

4.  DISCUSSION AND CONCLUSION 

 To better understand the physiology, pathophysiology, and therapy for ARDS, we utilized a 

large animal model that recapitulates the human conditions [15]. The animal model helps 

overcome some of the current clinical limitations and lends insight into the underlying physiology 

that leads to ARDS because it utilizes clinically relevant insults leading to diffuse alveolar damage, 

the histopathologic hallmark of ARDS. To date, most exhaled breath studies of ARDS have been 

limited in their scope, and most have used a single time point [4]. To our knowledge, we are the 

first group to use portable GC to study a high fidelity large animal model allowing for continuous 

point of care (POC) to monitoring of VOCs. The presented results support our previous study 

based on human subject for delineation between non-ARDS controls and ARDS patients in whom 

histopathologic examination of lungs are not possible. We found that the seven biomarkers (from 

swine’s breath) as shown in Table 1 are shared with the nine biomarkers (from the human subjects) 

that could distinguish non-ARDS and ARDS. This underscores the clinical relevancy of the swine 

model to simulate the human conditions.  



The longitudinal analysis revealed that volatile metabolic changes in exhaled breath might be 

used to map the pathologic trajectory of ARDS. In this animal model we provide evidence that it 

was possible to detect changes consistent with the development of ARDS 1-6 hours (3 hours on 

average) earlier than the clinical adjudication based on the Berlin criteria (Table S2). This may be 

the reason why in the testing set, accuracy is much lower than the training set, because most of the 

data points in the testing set are obtained when the animals were in the transition from pre-ARDS 

to ARDS using the Berlin criteria as the gold standard. Also, as expected, animals have different 

trajectories of ARDS development. For example, it took less than 1 hour for Swine #2 to develop 

ARDS after the induction of lung injury, whereas it took 3 hours or longer time for the other 4 

animals to develop ARDS (they died in 11-16 hours). It should be noted that the ability of breath 

analysis to provide early detection and trajectory monitoring of ARDS pathogenesis has also been 

demonstrated in a limited number of human subjects in our previous study (24-48 hours earlier 

than the ARDS adjudication using the Berlin criteria) [13]. 

Compared to our previous work on human subjects, the present study includes the following 

strengths. (1) We were able to control many endogenous and exogenous factors in study subjects 

that might affect breath VOC profiles. The animals were all male of the same approximate age 

under the same controlled environmental and dietary conditions. The multiple clinically relevant 

insults used to produce ARDS were uniform and tightly controlled. The sample collection and 

analysis were the same for all animals. (2) Lung tissue biopsies were collected at the end of the 

experiment to examine histopathological changes that are consistent with diffuse alveolar damage 

to diagnose ARDS, which is not feasible in standard clinical care and clinical research studies. The 

adjudication of animals’ last breath samples compared to the presence of histopathologic 

adjudicated diffuse alveolar damage provided increased accuracy and confidence of the training 

set. (3) We were able to perform detailed longitudinal studies (from the healthy pre-ARDS state 

to the final death due to ARDS), which helps better delineate the trajectory of ARDS. This could 

be vital for guided therapy and decision making. Finally, we identified a physiologically relevant 

VOC profile similar to that which we previously found in humans with ARDS [13] (see detailed 

discussion in Section S3 in the Supplementary Information). As a class of compounds, VOCs are 

highly relevant to the detection of ARDS because many are alkanes (e.g., pentane, heptane) and 

alkenes (e.g., -pinene), which are byproducts of inflammatory processes [3, 28-35]. The found 

VOC pattern in both our human and swine studies is consistent with what has been previously 



reported in the literature [3, 4] and is most often attributable to fatty acid peroxidation [36]. Lipid 

peroxidation (the oxidative degradation of lipid membranes that leads to cell damage and 

dysfunction) is mediated by reactive oxygen species, most likely generated by leukocytes [37, 38], 

which is consistent with what is known about ARDS pathogenesis [39].   

The study has several limitations. First, we used only five animals with limited data points. 

Consequently, we were unable to separate the training and testing set by animal identifiers. As 

such the training and testing sets have observations from the same animal at different time points. 

Although we conducted cross-validation, we expect improvement in mean accuracy and standard 

deviation with increased data sets. Second, severity of ARDS (i.e., mild, moderate, and severe) 

was not attempted due to lack of transition data points. In future, this work may be possible with 

increased number of swine and transition data points. Third, we identified seven biomarkers using 

swine model, compared to nine in the human study. This may be due to the limited number of 

swine and the breath samples used in this study. Additional swine experiments will be needed to 

determine the validity of identified compounds for ARDS detection. The institution of therapies 

that change the trajectory of ARDS by treating underlying causes such as sepsis can be instituted 

in the future to allow further dynamic perturbation of VOCs to understand whether the technology 

can track changes prior to standard clinical metrics. Finally, by design our swine model of ARDS 

is multifactorial in etiology, and our study design does not enable us to determine which exhaled 

breath signals are attributable to ARDS itself or the constituent exposures of our model (e.g., 

sepsis, aspiration). Further work will determine the generalizability of our findings. 

In conclusion, breath analysis using portable GC has been presented as an alternative for a 

rapid diagnostic and trajectory monitoring of ARDS. The performance of this methodology in 

delineating ARDS from pre-ARDS is excellent and provides encouraging conceptual evidence at 

the experimental level. Continuous monitoring of VOCs produced by ARDS opens up the potential 

for trajectory monitoring, which will have implications for earlier interventions. Using a high-

fidelity swine model to study exhaled breath significantly enhances the ability to study ARDS and 

to test new technologies aimed at improving its diagnosis, monitoring and treatment.  
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Figure 1. (A) Schematic of a portable GC attached to a ventilator for breath analysis. (B) Picture 

taken during the breath measurement, showing the connection of the portable GC to a 

mechanical ventilator via a sampling tube to monitor exhaled breath of a swine. 

  



 

Figure 2. Representative GC chromatogram of exhaled breath from a swine animal via a ventilator. 

The red arrows show the locations of all peaks used in biomarker search (see details in Table S1). 

  



 

Figure 3. Normalized peak area vs. time of seven biomarkers after the induction of lung injury. 

Each peak area is normalized to the total area under the chromatogram curve. The 0th hour refers 

to the time just before the induction of lung injury. 

0 2 4 6 8 10 12 14 16 18
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ea

k
 a

re
a 

(a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

Pentane,2-dimethyl-

0 2 4 6 8 10 12 14 16 18
0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ea

k
 a

re
a 

(a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

Heptane, 3-methyl-

Heptane,2,3,5-methyl-

0 2 4 6 8 10 12 14 16 18
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ea

k
 a

re
a 

(a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

0 2 4 6 8 10 12 14 16 18
0.00

0.01

0.02

0.03

0.04

P
ea

k
 a

re
a 

(a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

2,2,7,7-tetramethyloctane

0 2 4 6 8 10 12 14 16 18
0.00

0.01

0.02

0.03

0.04

0.05

P
ea

k
 a

re
a 

(a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

1-Decanol,2-ethyl-

0 2 4 6 8 10 12 14 16 18
0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
e
a
k

 a
re

a
 (

a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

0 2 4 6 8 10 12 14 16 18
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ea

k
 a

re
a 

(a
.u

.)

Sampling time (hour after lung injury)

 Swine1

 Swine2

 Swine3

 Swine4

 Swine5

3-octene,2,2-dimethylAlpha-pinene



 

Figure 4. PCA plot for the training set (40 data points in total). Black crosses and red circles denote 

respectively Pre-ARDS and ARDS adjudicated using the Berlin criteria. The region below and 

above the boundary line represents the baseline and ARDS region, respectively, as determined by 

breath analysis using the seven biomarkers in Table 1. The numbers shown in the PCA plot denote 

“swine number.sampling time”. For example: “1.2” refers to Swine #1 sampled 2 hours after the 

induction of lung injury. “4.0” refers to Swine #4 sampled before the induction of lung injury. 

“4.11” refers to Swine #4 sampled 11 hours after the induction of lung injury.  



 

 

 

Figure 5. PCA plot showing hourly trajectory of individual swine starting from the 0th hour 

(healthy and just prior to the induction of lung injury) to the end of the experiment or until the 

animal died (last data point, ARDS confirmed by biopsy). This figure shows the dynamic change 

in swine’s breath when the animal status changes from healthy pre-ARDS to ARDS. Black crosses 

and red circles denote respectively pre-ARDS and ARDS adjudicated based on the Berlin criteria. 

 

  



 

 

Table 1. Seven breath biomarkers that distinguish pre-ARDS and ARDS (the top seven). The last 

two VOCs (2,4-dimethyl-pentane and methyl-cyclohexane) were used as additional biomarkers to 

distinguish non-ARDS and ARDS in our previous studies with human subjects. 

  



 

 Training statistics Testing statistics Overall statistics 

 
ARDS 

Pre- 

ARDS 
Total ARDS 

Pre- 

ARDS 
Total ARDS 

Pre- 

ARDS 
Total 

Positive (ARDS) 20 3 23 12 7 19 32 10 42 

Negative 

(Pre-ARDS) 
0 17 17 1 7 8 1 24 25 

Column total 20 20 40 13 14 27 33 34 67 

Specificity (%) 85% 50% 70.6% 

Sensitivity (%) 100% 92.3% 97% 

Positive predictive 

value (%) 
87% 63% 76.2% 

Negative predictive 

value (%) 
100% 87.5% 96% 

Total accuracy 92.5% 70.3% 83.6% 

 

Table 2. Corresponding statistics based on the PCA scores of breath analysis for training, test, and 

overall sets.  
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Figure S1. The PaO2/FiO2 (P/F) ratios for all five swine. The arterial blood samples were collected 

and tested every hour, starting from the baseline (the 0th hour) to the end of the experiment. 

According to the Berlin criteria, the zone below/above the boundary line represents the ARDS/pre-

ARDS region, respectively. 
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S1. Selection of biomarkers 

In our study, a total of m=78 peaks were found. We first assumed that there are n=4 peaks 

relevant to the classification of ARDS versus pre-ARDS. We found that the 4-peak subset of (2, 

22, 63, 65) (note: the number in the parentheses is the Peak ID of a peak in the chromatogram) 

provides the best classification with an accuracy of 75% (see Table S1). Then additional 5 peaks 

(n’=5) were added, and we found that the 9-peak subset of [(2, 22, 63, 65) + (47, 46, 57, 10, 14)] 

provides the best classification with an accuracy of 92.5%. Then another 5 peaks (n’=5) were 

added and we found that the 14-peak subset of [(2, 22, 63, 65) + (47, 46, 57, 10, 14) + (19, 31, 43, 

60, 74)] provides the best classification with an accuracy of 90%. The classification accuracy 

becomes worse from the 9-peak subset to the 14-peak subset. Therefore, we discarded the 14-peak 

subset and focused only on the 9 peaks [(2, 22, 63, 65) + (47, 46, 57, 10, 14)]. We found that the 

7-peak subset of [(2, 22, 63, 65) + (47, 46, 57)] provides the same classification with a total 

accuracy of 92.5% as that of 9-peak subset. Peak 10, Peak 14, or the combination of both, did not 

yield higher accuracy. Consequently, we chose the 7 peaks [(2, 22, 63, 65) + (47, 46, 57)] as the 

biomarkers to distinguish pre-ARDS and ARDS. 

 

 

 

 
 

Table S1: Accuracy tabulated for all peak search for peak subset containing 4 peaks, 7 peaks, 9 

peaks, and 14 peaks for the training set. The same color indicates the same subset of peaks kept 

while doing the additional peak search. 
  



 

 

Figure S2. PCA plot of the testing set (27 data points). The region below and above the boundary 

line represents pre-ARDS and ARDS, respectively. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3. PCA plot of all data points (training and testing sets combined). 

  



Swine #1 #2 #3 #4 #5 

Berlin criteria 7th hour 4th hour 7th hour 9th hour 7th  hour 

Breath 6th hour 1st hour 7th hour 3rd hour 4th hour 

 

Table S2. Comparison of ARDS onset detection between the Berlin criteria and breath analysis. 

The data are extracted from Figure 5 in the main text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S3. Statistics for cross-validation. The original training datasets were divided into 5 cross-

validation models. In Model 1, Swines #2-5 datasets were used as the training set and Swine #1 

dataset as the testing set. In Model 2, Swines #1 and 3-5 datasets were used as the training set and 

Swine #2 dataset as the testing set, and so on so forth. Note that the accuracy for the test set (Swine 

#2) decreases significantly in Model 2 since Swine #2 might have developed ARDS the 1st hour 

after the induction of lung injury (see “PCA score for Swine 2” in Figure 5), although the clinical 

adjudication based on the Berlin criteria suggested otherwise. 

 

  

 Training statistics 

Cross Validation Model 1 Model 2 Model 3 Model 4 Model 5 

Specificity (%) 100 100 81.2 81.2 81.2 
Sensitivity (%) 100 100 100 100 100 

Positive predictive value (%) 100 100 82.4 84.2 84.2 
Negative predictive value (%) 100 100 100 100 100 

Total accuracy (%) 100 100 90 90.6 90.6 
 Testing statistics 

Cross Validation Model 1 Model 2 Model 3 Model 4 Model 5 

Specificity (%) 100 25 75 100 100 
Sensitivity (%) 100 100 100 100 100 

Positive predictive value (%) 100 57.1 85.7 100 100 
Negative predictive value (%) 100 100 100 100 100 

Total accuracy (%) 100 62.5 90 100 100 
 Overall statistics 

Cross Validation Model 1 Model 2 Model 3 Model 4 Model 5 

Specificity (%) 88.9 85 80 85 85 
Sensitivity (%) 100 100 100 100 100 

Positive predictive value (%) 90.9 86.95 83.3 86.95 86.95 
Negative predictive value (%) 100 100 100 100 100 

Total accuracy (%) 95 92.5 90 92.5 92.5 



S2. Operation of the portable GC 

 

The operation procedures and parameters of the portable GC are described as follows. 

 

(1) Sampling: Breath VOCs were drawn by the diaphragm pump through the 2-port valve and 

adsorbed by the thermal desorption tube at a flow rate of 70 mL/min for 5 min (a total volume of 

350 mL). The optimization of the flow rate resulted from a balance between reducing sampling 

time and preventing VOC breakthrough in the thermal desorption tube. The sample volume (350 

mL) was optimized to achieve adequate signal-to-noise ratios for most VOC peaks while not 

saturating the detector. 

 

(2) Desorption and injection: The 2-port valve was closed and helium gas was flowed through the 

3-port valve to provide the carrier gas at a flow rate of 2 mL/min. Meanwhile, the thermal 

desorption tube was heated to 300 °C for 5 min to transfer the trapped analytes onto the micro-

thermal injector. Then the micro-thermal injector was heated to 250 °C in 0.3 s and then kept at 

250 °C for 5 s for complete thermal desorption and injection of the analytes into the column. The 

micro-thermal injector heating parameter was optimized to desorb all VOCs and achieve sharp 

injection peak width (~0.5 s full-width-at-half-maximum). 

 

(3) Separation: The analytes underwent separation through the 10 m long column and were then 

detected by the μPID. During the separation, the column was kept at 25 °C for 2 min, then first 

ramped at a rate of 10 °C min−1 to 80 °C, next ramped at a rate of 40 °C min−1 to 120 °C, and kept 

at 120 °C for 1 min. The helium flow rate was 2 mL/min for the column. The ramp rate, column 

temperature, and carrier gas flow rate were optimized to achieve the best separation of breath 

VOCs with the shortest possible time. 

 

(4) Cleaning: After analysis, the thermal desorption tube was heated to 300 ºC for 5 min followed  

by heating the micro-thermal injector to 250 °C in 0.3 s and then keeping it at 250 °C for 6 s at a 

helium flow rate of 25 mL/min. This process was repeated twice in order to completely remove 

residual analytes (if any) trapped in the thermal desorption tube and the micro-thermal injector.  

 

The total assay time was 30 minutes, which included 5 minutes of sample collection, 5 minutes 

of desorption/transfer, 10 minutes of separation, and 10 minutes of cleaning. 

  



S3. Comparison of biomarkers between swine and human 

 

Figure S4. Comparison of the same seven ARDS biomarkers between swine and human. 

 

Figure S4 compares the same seven ARDS biomarkers that we found in the current study 

(swine) and our previous human study [1]. The black boxplots are for pre-ARDS or non-ARDS, 

whereas the red boxplots are for ARDS. The swine’s data are extracted from Figure 3 in the main 

text. For each biomarker, we use the first five datapoints (one for each animal) collected at the 

very beginning of the experiment (time = 0 hour, prior to the induction of lung injury) and last five 

datapoints (one for each animal) collected at the end of our time-series breath measurement. The 

human’s data are extracted from our previous study [1], in which there were 44 non-ARDS samples 

and 41 ARDS samples. It should be emphasized that based on our algorithm the entire seven 

biomarkers must be used as a whole set. Comparing of each individual markers may result in a 

misleading conclusion. 

With the above explanation, let us compare those seven biomarkers. In general, for each 

biomarker the difference between non-ARDS (or pre-ARDS) and ARDS in swine is much more 

distinct than in human. Among the seven biomarkers, the trend of five biomarkers (2-

methylpentane, 2,3,5-trimethylheptane, 2,2,7,7-tetramethylocatane, -pinene, and 2,2,-dimethyl-

3-octene) match well between swine and human. The remaining two biomarkers, 3-methylhepane 

and 2-ethyl-1-decanol, change signifiantly from pre-ARDS to ARDS in the swine model, whereas 

in human the changes are quite small. The strong overlap of each biomarker between non-ARDS 

and ARDS in human reflects the heterogeneity of human subjects (as well as clinical intervention 

on the human subjects during treatment) as compared to the homogeneous swine model (without 

any intervention), which we have also dissused in the main text.  

Finally, we need to add the following two comments. First, despite the small difference of 3-

methyl-hepane and 2-ethyl-1-decanol between non-ARDS and ARDS, these two compounds need 

to be included in the whole biomarker set. Without them, the accuracy of human ARDS breath 

analysis would decrease. Second, the PCA coefficients that we used on the seven (out of nine) 

biomarkers in the human study cannot be directly applied to the same seven biomarkers in the 



swine model in order to determine the status of swine (e.g., pre-ARDS or ARDS), since the 

compounds in human and swine breaths are not exactly the same. 
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