Impact of lockdown during the COVID-19 pandemic on health status in patients with cystic fibrosis- a mono-center observational study

Stephanie Thee, Leonie Marie Busack, Marcus A. Mall Mirjam


This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2022. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
Research letter

Impact of lockdown during the COVID-19 pandemic on health status in patients with cystic fibrosis - a mono-center observational study

Stephanie Thee¹, Leonie Marie Busack¹, Marcus A. Mall¹,²,³*, Mirjam Stahl¹,²,³*

1. Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
2. German Centre for Lung Research (DZL), Associated Partner, Berlin, Germany
3. Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany

*equal contribution as senior authors

Corresponding author:
Marcus A. Mall, MD, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Phone: +49-30-450566182; Fax: +49-30-450566931; E-Mail: marcus.mall@charite.de
Patients with cystic fibrosis (CF) suffer from impaired mucociliary clearance making them more susceptible to a spectrum of inhaled pathogens including bacteria, fungi and viruses (1, 2). Therefore, patients with CF were considered at high risk for serious illness following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to “shielding or cocooning policies” (3). Usually, patients with CF are cared for in specialized CF clinics with regular check-up visits. It was shown that regular care by multidisciplinary CF teams with highly trained staff lead to improvement in clinical outcomes in patient with CF (4). At our centre, patients are usually seen at least quarterly. Between March and May 2020, at the peak of the first wave of SARS-CoV-2 infection in Germany, national authorities imposed an 8-week lockdown period on the entire population. During this period, hospitals and health care facilities reduced elective health care services including outpatient clinics to a minimum to focus their resources on the care of patients with coronavirus disease 2019 (COVID-19). Accordingly, all scheduled visits to our CF outpatient clinic were postponed and patients were advised to stay in home isolation. Additionally, due to lockdown measures, the patients’ possibilities for performing supportive therapies such as chest physiotherapy or physical exercise were limited. Hospital admission in case of severe clinical deterioration, e.g. pulmonary exacerbation, was available. Replacement of scheduled visits by e.g. video consultation or care by non-physician members of the multidisciplinary team was not yet implemented at this first lock-down period.

The aim of this study was to assess the impact of home isolation during this lockdown period on the health status of patients with CF focusing on lung function outcomes. This mono-center observational study was performed at the CF center of the Charité-Universitätsmedizin Berlin caring for 269 patients with CF (median age
25.4; IQR 12.7-38.5; 93 patients (34.6%) <18 years of age). If receiving cystic fibrosis transmembrane conductance regulator (CFTR)-modulator therapy, patients had to receive this for more than three months before the start of the lockdown to be eligible for the study. Patients without lung transplantation or pulmonary exacerbation at time of spirometry, and at least one lung function test available within three months before and after the lockdown period were included. Spirometry was performed according to ATS/ERS criteria and percent predicted forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) was calculated according to global lung function initiative values (5, 6). In case more than one lung function test was available in the 3-months period pre- or post-lockdown, the mean value of each period was determined. For comparison, lung function values at the same time periods in the previous year were collected. Again, lung function values were excluded if a CFTR modulator therapy was initiated within the study period. In patients ≥18 years of age BMI was calculated, in those <18 years of age BMI-percentile according to age. Paired Student t-test was used for comparison of different time-points. The study was approved by the Ethics Committee at Charité–Universitätsmedizin Berlin (EA2/016/18) and all patients provided informed consent.

In total, 117/269 (43.5%) patients with CF were included (median age 23.4; IQR 14.2-35.4), 73 (62.4%) were female and the median age was 23.4 (interquartile range (IQR) 14.2-35.4) years with 75 patients (64.1%) being ≥ 18 years-of-age (median age 32.6, IQR 25.9-44.9) and 42 (35.9%) <18 years-of-age (median age 11.7, IQR 8.7-15.3). Fifty (42.7%) patients received PCR-testing for SARS-CoV-2 up to the post-lockdown visit, with one out of 50 (0.9%) patients testing positive for SARS-CoV-2. Seventy-one (60.7%) patients were chronically infected with Pseudomonas aeruginosa (Psa), four (3.4%) with Burkholderia species, and ten
(8.5%) with methicillin-resistant *Staphylococcus aureus*. Patients were considered chronically Psa-infected, if Psa was detected in more than 50% of respiratory samples over a period of a minimum of 12 months. Fifty-five/75 (73.3%) of Psa-infected patients were ≥18 years of age compared to 16/42 (38.1%) of Psa-negative patients. During the study period, 53 patients (45.5%) received a CFTR modulator therapy, 20/42 (47.6%) pediatric patients (13 lumacaftor/ivacaftor, 2 tezacaftor/ivacaftor, 4 elexacaftor/tezacaftor/ivacaftor, 1 ivacaftor) and 33/75 (44.0%) of adult patients (15 lumacaftor/ivacaftor, 14 tezacaftor/ivacaftor, 1 elexacaftor/tezacaftor/ivacaftor, 3 ivacaftor). In the whole cohort, FEV1 % predicted remained stable (mean, 95% confidence interval (CI) pre- versus post-lockdown: FEV1 72.48% (68.40-76.57%) vs. 70.99% (66.89-75.09%; p=0.080), FVC % predicted improved (84.63% (81.32-87.95%) vs. 82.86% (79.48-86.23%); p=0.031).

Comparing adult and pediatric patients we found that FEV1 % predicted remained stable in patients with CF ≥ 18 years of age (64.99% (60.18-69.79%) vs. 64.33%, (59.38-69.27%); p=0.526), but declined in younger patients by 3.0% (85.87% (80.16-91.58%) vs. 82.88% (76.98-88.79%); p=0.05; Fig. 1a). FVC % predicted was stable in patients ≥ 18 years of age (79.93% (5.88-83.97%) vs. 78.29% (74.16-82.42%); p=0.083; Fig. 1c) and patients <18 (93.04% (88.07-98.01%) vs. 91.01% (85.86-96.16%); p=0.200). In CF patients without chronic Psa infection, FEV1 % predicted and FVC % predicted declined by 4.2 percentage points (80.77% (74.04-87.50%) vs. 76.55% (70.05-83.06%; p=0.014) and 4.6 percentage points (89.68% (84.06-95.31%) vs. 85.10% (79.33-90.88%); p=0.002), respectively, from pre- to post-lockdown visits, while in patients with chronic Psa infection, the differences were not significant (FEV1 67.12% (62.26-71.97%) vs. 67.39% (62.15-72.62%); p=0.752; FVC 81.36% (77.38-85.35%) vs. 81.40% (77.20-85.60%; p=0.968; Fig. 1b). In adult patients, the median BMI (IQR) before versus after lockdown was 21.2 (19.2-22.6)
kg/m² versus 21.1 (19.1-22.8) kg/m² (p=0.06) and in pediatric patients it was 32.0 (17.8-49.3) percentile for age versus 32.0 (17.0-53.8) percentile for age (p=0.33).

To compare our findings with the course of lung function in the year prior to the pandemic, we analyzed lung function tests of all patients that were performed in 2019 during time periods corresponding to the “pre-lockdown” (December 2018 to February 2019) and “post-lockdown” periods (June 2019 to August 2019). In total, lung function data of 66 patients were available for this analysis. Over this time period, lung function in the entire study population remained stable. Subgroup analysis showed that lung function remained stable in pediatric patients (<18 years of age). In adult patients, FEV1 % predicted and FVC % predicted declined by -2.8 percentage points (p=0.001) and -2.3 percentage points (p=0.005), respectively. In Psa negative patients, no change in lung function was seen, whereas in Psa positive patients FEV1 % predicted declined by -2.2 percentage points (p=0.040) and FVC % predicted also declined by -2.2 percentage points (p=0.021), respectively.

To our knowledge, this is the largest study so far evaluating the effect of a lockdown period during the COVID-19 pandemic on lung function outcomes in pediatric and adult patients with CF. While lung function remained stable in the entire study population, there was a significant decline in FEV1 % predicted by 3.0 percentage points in our pediatric patients (Fig.1a). Of note, patients of the Psa negative group, mainly younger than 18 years, experienced a significant decline of 4.2 percentage points of FEV1 % predicted. This decline in FEV1 % predicted exceeds the annual decline reported in registry studies (-0.5 to -2.6 percentage points) and CFTR modulator trials (-0.1 to -2.2 percentage points) (7-9) and was not observed in our study population in the year prior to the pandemic. In contrast, in patients chronically infected with Psa, lung function declined in the year prior to the lockdown, but
remained stable with a trend towards improvement over the lockdown period (Fig. 1 c,d).

It is well established that CF care and patient outcomes improve if patients are seen regularly by trained, multidisciplinary CF teams. In a center-based analysis, more frequent monitoring and increased use of appropriate therapies were associated with an improved outcome in CF (4). In addition to limited access to specialized CF care, supportive therapies like physiotherapy and sport opportunities were also markedly reduced during the lockdown period. A study in 327 patients with CF from Switzerland showed that lockdown measures led to substantially decreased levels of physical activity (10). Physical exercise is routinely recommended in CF care because of its beneficial effect on general fitness, airway clearance, lung function and quality of life. Physical activity is associated with increased peak oxygen uptake (VO2peak), which in turn is linked to better survival in CF (11). On the other hand, due to the implemented infection control measures, spreading of seasonal viral or bacterial infection was reduced substantially in the general population during lockdown periods. Accordingly, the number of visits to pediatricians in general practice and hospital admissions due to acute respiratory tract infection markedly declined during the lockdown period compared to previous years (12). Preceding viral infections are an acknowledged risk factor for pulmonary exacerbations in CF (13). With reduced exposure to respiratory pathogens, the number of pulmonary exacerbations decreased during the time of COVID-19 restrictions in patients with CF and non-CF bronchiectasis (14, 15). Despite all this, FEV1 % predicted dropped significantly in patients without chronic Psa infection, including most of the pediatric patients, in our cohort, suggesting even short lockdown periods may have adverse effects on long-term outcomes of patients with CF. Especially reduced physical
activity due to home isolation with limited access to sporting activities during lockdown might play a role in the younger age group.

The majority of chronically Psa-infected patients were adults, who might have been able to dedicate more time to CF therapy during the lockdown because of home office, reduced travel time and restricted social activities. Accordingly, lung function declined in Psa-infected patients in the pre-pandemic period, but was stable over the lockdown period. There was no difference in BMI (or BMI-percentile) pre- and post-lockdown.

Our study is limited by its retrospective nature and the single center analysis. Taken together, in the entire study group of patients with CF lung function remained stable over the first lockdown period in Germany. But our data indicate potential adverse effects of the first lockdown period with restricted access to healthcare and sporting activities on the subgroups of pediatric and not Psa-infected patients with CF. These findings may be aggravated by prolonged lockdown periods. Therefore, information on consequences of repetitive shutdowns and reduced availability of outpatient care over prolonged periods in patients with CF is urgently needed. This may also be relevant for other patient groups with chronic lung diseases depending on regular specialized care.
Support statement: This study was supported in part by a grant from the German Federal Ministry of Education and Research (82DZL009B1) and the German Innovation Fund (01NVF19008).

Conflict of interest: Disclosures can be found alongside this article at erj.ersjournals.com

Acknowledgements: We thank the staff at the Christiane Herzog Cystic Fibrosis Centre, Charité - Universitätsmedizin Berlin for their support.

Author contributions: Conception and design of the study: S. Thee, M.A. Mall, M. Stahl; acquisition, analysis and interpretation of data: S. Thee, L. Busack, M.A. Mall, M. Stahl; drafting the article or revising it critically for important intellectual content: S. Thee, L. Busack, M.A. Mall, M. Stahl.
References


Figure 1 Comparison of change of lung function parameters in patients with cystic fibrosis pre-and post-lockdown and in a comparable time period in the year before the pandemic in the entire study group (figure 1a, d), according to age group (<18 years of age and ≥ 18 years of age, figure 1b, e) and Pseudomonas aeruginosa (Psa) infection status (patients chronically and not chronically infected with Psa, figure 1c, 1f). Changes in forced expiratory volume in 1 second (FEV1) % predicted and forced vital capacity (FVC) % predicted are displayed as means and 95% confidence intervals.