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To the Editor: 

Endostatin (ES) is a circulating peptide derived from collagen XVIII, alpha 1 (COL18A1) 

known to inhibit angiogenesis (1, 2). Decreased angiogenesis is a feature of pulmonary arterial 

hypertension (PAH) in animal models (3) and human subjects (4). Our group has reported 

strong associations between circulating ES levels and hemodynamics and survival in PAH (5-7). 

We have also reported that a missense variant in COL18A1, which encodes ES, confers lower ES 

and longer survival, suggesting variation within the gene contributes to circulating levels (5). 

With this study, we assessed COL18A1 variant associations with clinical phenotypes and 

outcomes, including COL18A1 associations with circulating ES levels, in a large, multicenter PAH 

cohort in which we previously investigated ES as a prognostic biomarker (6). 

This study was approved by the Johns Hopkins University Institutional Review Board. 

Serum samples contributed to the National Heart, Lung, and Blood Institute-sponsored PAH 

Biobank underwent single nucleotide polymorphism (SNP) genotyping using the Omni5-4 

BeadChip (Illumina) and whole exome sequencing (WES) through the Regeneron Genetics 

Center (8). An electrochemiluminescence assay was developed to quantitate ES. Sample 

collection and processing methods have been previously published (6, 9, 10). 

ES measurements were regressed on genotypes of COL18A1 variants to perform a 

multivariable protein quantitative trait loci (pQTL) analysis. Linear regression models adjusted 

for age and sex were restricted to subjects of European (EA) or African ancestry (AA). To 

determine whether ES-associated SNPs also impacted regulation of COL18A1 gene expression, 

pQTLs were queried in a publicly available expression quantitative trait loci (eQTL) database of 

whole-blood RNA samples (11). Associations with clinical phenotypes and survival were 



modeled using multivariable linear and Cox regressions. Minor allele frequencies (MAF) for 

COL18A1 variants were compared with the Genome Aggregation Database 

(gnomad.broadinstitute.org). Linkage disequilibrium (LD) across the COL18A1 region was 

assessed using D’ (12). A p value of <0.05 was considered nominally significant. An LD-adjusted 

correction for multiple testing was applied for QTL analyses equaling 0.0016 in EA and 0.0013 in 

AA subjects. Statistical tests were performed using Stata version 15.1 (StataCorp., College 

Station, TX, USA), SAS version 9.4 (SAS Institute, Cary NC), and PLINK (13) version 1.9 

(http://pngu.mgh.harvard.edu/purcell/plink/).  

 The cohort consisted of 2,017 subjects with median age 53 years, of whom 80% were 

female and 82% were of European ancestry (EA). Full clinical characteristics of this cohort have 

been published previously (6). Briefly, subjects had prevalent disease (median duration at 

sample collection 48 months, interquartile range 14-92 months) and moderately severe PAH at 

enrollment, with mean pulmonary artery pressure (mean ± standard deviation) 50 ± 15 mmHg, 

pulmonary vascular resistance 10 ± 6 Wood units, and 45% with New York Heart Association 

Functional Class III or IV symptoms. Most subjects had IPAH (n=870) or CTD-PAH (n=623).  From 

the Omni5 SNP array, 100 COL18A1 variants in 1400 EA subjects and 126 COL18A1 variants in 

209 subjects of African ancestry (AA) passed quality control (HWE >0.001, MAF >0.05 and 

genotype missing rate <5%), with 91 variants present in both EA and AA subjects. In 

multivariable pQTL analysis, 26 cis-acting SNPs were associated with ES levels in EA individuals, 

and eight were associated with ES levels in AA individuals. There were no pQTLs in common for 

EA and AA subjects. Twenty-three of 26 pQTLs in EA and five of eight pQTLs in AA individuals 

were associated with differences in COL18A1 gene expression. In EA subjects, two Omni5 SNPs 

http://pngu.mgh.harvard.edu/purcell/plink/


demonstrated associations with cardiac index (CI): the T allele was associated with a 0.11 L/m2 

lower CI for rs7281138 (p 0.043), and a 0.12 L/m2 lower CI for rs2838917 (p 0.028). QTL data 

and genotype-phenotype associations are shown in the Table.  

Of 102 COL18A1 WES variants, 22 had a frequency of 5% or greater; none deviated from 

HWE. Six SNPs overlapped between exonic SNPs and Omni5 SNPs. Three of the 16 unique 

exonic variants in EA and one in AA subjects were associated with differences in serum ES. All 

four exonic pQTLs identified were also associated with significant differences in COL18A1 gene 

expression in eQTL analysis. In EA subjects, two exome variants demonstrated associations with 

survival: the A allele was associated with 23% lower mortality for rs7499 (HR 0.77, 95% CI 0.62-

0.96, p 0.018), and the A allele was associated with 24% lower mortality for rs1050351 (HR 

0.76, 95% CI 0.61-0.95, p 0.015). Six exonic variants with chromosomal positions in close 

proximity were associated with longer 6MWD, and an additional three exonic variants, also in 

close proximity, were associated with higher CI (Table). There were no observed differences in 

MAFs of COL18A1 variants compared to available controls.  

Our QTL results suggest circulating ES levels are partially genetically influenced by 

variants in and around COL18A1. The eQTL results suggest some variation in ES abundance may 

be due to variations in mRNA expression. Most known QTLs are associated with changes in 

mRNA expression, with downstream effects on ribosome occupancy and protein abundance 

(14). Thus, eQTLs often have smaller effect sizes on protein levels than on gene expression (14, 

15), consistent with our results. We found some signal for genetically influenced phenotypic 

variation, though none of the phenotypically-associated variants were ES-associated pQTLs, and 

all but one (rs7499 in the 3’ untranslated region) were synonymous variants. Interestingly, 



rs7499 has been associated with significantly reduced risk of hepatocellular carcinomas in 

patients with hepatitis B infection (16), suggesting some biologic significance of this variant in 

humans.  

In contrast to our 2015 report (5), we did not find an association between rs12483377 

and ES levels or outcomes. This discrepancy may be due to the smaller sample size in the first 

study. Genotype at rs12483377 was not associated with survival in two large PAH genome-wide 

association studies (GWAS) later published (17), though these GWAS excluded patients with 

connective tissue disease and may have investigated genetically different cohorts.  

 This study has several limitations. We are limited by the cohort size available for a rare 

disease; consequently, some of our results are of nominal significance, with a higher likelihood 

of observation due to chance alone. The QTL results are based on associations in whole blood, 

as mRNA or protein expression data from human tissues most relevant to disease are not 

available. The genetic and clinical associations with ES are based on a single time point for each 

subject. Further, OMNI5 genotyping and WES leaves many genetic variants uncharacterized. 

Therefore, the identified genotype-phenotype associations may not be causal themselves, but 

rather in LD with true, unidentified QTLs.  

 Aside from reports on BMPR2, our study is one of only a few (17, 18) that offer insights 

into genetic influences on disease severity and heterogeneity in PAH, a strength of our work. 

Heritable modifiers of phenotype have not been well-established in PAH, and most genetic 

studies have focused on identifying loci contributing to disease susceptibility, rather than 

disease severity or prognosis. 



In conclusion, these results suggest PAH disease heterogeneity is influenced in part by genetic 

variation around the COL18A1 gene. ES levels have been linked to variation in PAH severity and 

outcomes, and our results suggest ES levels may be genetically influenced. Understanding 

influences on transcription and translation of genes implicated in disease can clarify therapeutic 

targeting strategies. Future work on ES/COL18A1 is needed to better understand genetic and 

cellular mechanisms underlying PAH pathobiology. 
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Table. COL18A1 variants associated with serum endostatin levels (pQTLs), gene expression (eQTLs), and 

clinical measures 

QTL Data      

 ES β ES p value eQTL β eQTL p value FDR 

EA Subjects 

OMNI5 Array 

rs9976834 -3510 0.0001983 -0.66 2.22E-197 <1.34e-05 

rs9976784 -3205 0.0003702 -0.666 2.27E-200 <1.34e-05 

rs2838932 -3137 0.0004473 -0.636 1.17E-184 <1.34e-05 

rs2236461 -3089 0.0004758 -0.643 4.78E-191 <1.34e-05 

rs9977482 -2903 0.0006399 -0.705 9.81E-254 <1.34e-05 

rs2236470 -2864 0.0007104 -0.707 2.57E-255 <1.34e-05 

rs8133622 -2988 0.0007197 -0.632 1.27E-182 <1.34e-05 

rs9980531 -2947 0.0008603 -0.625 5.94E-177 <1.34e-05 

rs11702782 -3139 0.001041 -0.584 6.75E-37 <1.34e-05 

rs12482088* -2758 0.001153 -0.695 1.02E-248 <1.34e-05 

rs201577993 -2552 0.001393 NA NA NA 

rs2330180 -2898 0.001514 -0.632 5.80E-180 <1.34e-05 

rs2236459 -2475 0.001694 -0.513 1.35E-143 <1.34e-05 

rs2236464 -2677 0.002145 -0.654 1.06E-196 <1.34e-05 

rs11702494 -2567 0.00237 -0.674 1.76E-231 <1.34e-05 

rs2236451* -2289 0.00332 -0.55 1.20E-176 <1.34e-05 

rs55684533 -2479 0.004203 NA NA NA 

rs10854470 -1915 0.01018 -0.445 1.32E-122 <1.34e-05 

rs2236454 -1902 0.01065 -0.465 9.84E-134 <1.34e-05 

rs4819124 -1802 0.01436 -0.367 1.74E-86 <1.34e-05 

rs61633029 -1864 0.02498 -0.473 1.06E-115 <1.34e-05 

rs17338076 -2409 0.02935 -0.674 1.38E-34 <1.34e-05 

rs2236479 -1641 0.03106 -0.455 5.77E-127 <1.34e-05 

rs2150443 -1544 0.03625 -0.367 2.40E-86 <1.34e-05 

rs7409857 -1531 0.03885 -0.32 6.64E-65 <1.34e-05 

rs7281138 1752 0.04298 NA NA NA 



WES 

rs9979845 -2675 0.0013 -0.705 9.81E-254 <1.34e-05 

rs11702425 -2107 0.0058 -0.532 4.67E-157 <1.34e-05 

rs749627 -1682 0.022 -0.304 6.79E-58 <1.34e-05 

AA Subjects 

OMNI5 Array 

rs4819124 -5598 0.01829 -0.367 1.74E-86 <1.34e-05 

rs2150443 -5415 0.0219 -0.367 2.40E-86 <1.34e-05 

rs73370840 6899 0.02508 0.31 1.30E-23 <1.34e-05 

rs2838917 -4931 0.02828 0.153 7.35E-13 <1.34e-05 

rs114255716 10260 0.0306 NA NA NA 

rs78620106 10810 0.0308 NA NA NA 

rs61633029 5548 0.03098 -0.473 1.06E-115 <1.34e-05 

rs56327327 -4398 0.04565 NA NA NA 

WES 

rs749627 5172 0.025 -0.304 6.79E-58 <1.34e-05 

Phenotypic Data    

 Clinical Measure Effect Estimate p value 

EA Subjects 

rs7499 Survival 0.77 (0.62-0.96) 0.018 

rs1050351 Survival 0.76 (0.61-0.95) 0.015 

rs1131100 6MWD (m) 30.61 (2.09-59.13) 0.035 

rs1131101 6MWD (m) 30.61 (2.09-59.13) 0.035 

rs2236467 6MWD (m) 30.16 (1.80-58.53) 0.037 

rs1131102 6MWD (m) 30.11 (1.72-58.49) 0.038 

rs2236466 6MWD (m) 28.49 (-0.02-57.01) 0.050 

rs7281138** Cardiac Index (L/m2) -0.11 (-0.23- -0.004) 0.043 

rs2838917** Cardiac Index (L/m2) -0.12 (-0.23- -0.01) 0.028 



rs2230688 Cardiac Index (L/m2) 0.19 (0.04-0.33) 0.010 

rs2230687 Cardiac Index (L/m2) 0.19 (0.05-0.33) 0.009 

rs2236456 Cardiac Index (L/m2) 0.14 (0.002-0.28) 0.047 

Definition of abbreviations. ES: endostatin; β: beta coefficient; eQTL: expression quantitative trait loci; FDR: false discovery rate; EA: European 

ancestry; NA: no association between variant and gene expression; AA: African ancestry. 
QTL data: ES beta coefficients reflect differences in ES in pg/mL for each copy of the minor allele. eQTL beta coefficients reflect differences in 
robust multi-array analysis (RMA), a measure of intensity derived from Affymetrix gene expression data.  
Linear regressions on ES levels are adjusted for age and sex. Methods for eQTL models have been previously published (11). Phenotypic data: 
Effect estimates are hazard ratios for associations with survival and beta coefficients for associations with all other clinical measures. 
Coefficients reflect differences in clinical measures for subjects with the presence versus the absence of the minor allele. Associations with 
cardiac index are adjusted for age at enrollment, sex, PAH subtype, and PAH therapies. Associations with survival are additionally adjusted for 
difference in time from PAH diagnosis to cohort enrollment. Associations with 6MWD are adjusted for body mass index and the following 

comorbid conditions: hypertension, diabetes, obstructive lung disease, cardiomyopathy, and chronic kidney disease. Phenotypic data are 
reported for EA only. 
* denotes SNPs that appears on both OMNI5 and WES arrays 
** denotes SNPs from Omni5 array; all others are WES SNPs. 

 


