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Abstract 

Purpose: Oxidative stress is an important amplifying mechanism in chronic obstructive 

pulmonary disease (COPD), however, it is unclear how oxidative stress changes and its exact 

amplification mechanism in pathological process. We aimed to dynamically analyze the 

progression of COPD and further elucidate the characteristics of each developmental stage 

and unveil the underlying mechanisms. 

Methods: We performed a holistic analysis by integrating GEO microarray datasets 

related to smoking, emphysema, and GOLD classification based on the concept of gene, 

environment and time (GET). Gene Ontology (GO), protein-protein interaction (PPI) networks 

and gene set enrichment analysis (GSEA) were used to explore the changing characteristics 

and potential mechanisms. Using lentivirus to promote HIF3A overexpression. 

Results: In smokers vs nonsmokers, GO term mainly enriched in “negative regulation of 

apoptotic process”. In later transitions between stages, the main enriched terms were 

continuous progression of “oxidation-reduction process”, and “cellular response to hydrogen 

peroxide”. Logistic regression showed that these core DEGs had diagnostic accuracy in test 

(AUC=0.823) and validation (AUC=0.750) sets. GSEA and PPI network showed one of the 

core DEGs, HIF3A, strongly interacted with the ubiquitin-mediated proteolysis pathway. 

Overexpression of HIF3A  restored SOD levels and alleviated the ROS accumulation caused 

by CSE treatment. 

Conclusion: Oxidative stress was continuously intensified from mild emphysema to 

GOLD-4, thus, special attention should be paid to the identification of emphysema. 

Furthermore, the downregulated HIF3A may play an important role in the intensified oxidative 



stress in COPD. 
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Introduction 

Chronic obstructive pulmonary disease (COPD) is a common chronic disease 

characterized by persistent respiratory symptoms and airflow limitation, which remains a 

significant global health problem due to its high prevalence and mortality(1). A Global Burden 

of Disease (GBD) study reported that the disease resulted in the death of an estimated 3.2 

million people worldwide in 2017(2). In China, the prevalence of COPD among adults aged 

20 years and older in China was 8.6%, and the prevalence among adults aged 40 years and 

older was 13.7%. This indicates that nearly 100 million people have COPD in China(3), thus, 

improving the prevention and treatment of this disease is critical.  

In most patients with COPD, the disease develops over decades and involves etiology, 

pathology, and the worsening of clinical symptoms (4-6). Several studies have shown the late 

diagnosis of COPD is the most important factor underlying poor prognosis among a significant 

proportion of patients(7-9). Therefore, it is not sufficient to confine the study of COPD to the 

stage of clinical symptoms; the focus should be shifted forward to the period of development 

of pathological lesions, such as emphysema (the typical pathogenic development phase of 

COPD), and the period involving the risk factor of smoking. A holistic and dynamic analysis of 

COPD, taking into account of smoking, emphysema and Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) classification, which reflects the clinical symptoms is 

needed. 

Recently, a new concept has emerged, which integrates gene (G), environment (E) and 

clinical phenotype information from basic transcriptomics over time (T). GET was a novel 

approach, by integrating information from basic and clinical omics with exposures over the 



lifespan, attempt to uncover novel opportunities for prevention and early treatment of COPD, 

leading to improved understanding of underlying pathogenic mechanisms and identification of 

novel targets(10). There have been many transcriptomics studies comparing COPD patients 

and healthy individuals(11-13). However, thus far, no study has combined data related to 

etiology, pathology, and GOLD classification to conduct a holistic and dynamic analysis of 

COPD. In this study we conducted a GET analysis toward COPD by integrate the 

transcriptomics microarray data including smoking (the etiology and the environment pollution 

of COPD), 0emphysema (the clinical phenotype and progression stage of COPD), and the 

GOLD classification (indicate the worsening of clinical symptoms of COPD), in order to 

elucidate the characteristics in each of the progression stage and unveiling the mechanisms 

underlying. 

 

Materials and Methods 

Dataset Preparation 

Microarray datasets were screened from Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo). The selection criteria were as follows: 1.Lung tissue 

samples from nonsmokers, smokers, emphysema and COPD patients were included; 2. 

Former smokers had quit smoking when participating the program were included; 3. Diffusion 

Capacity for Carbon Monoxide of the Lung (DLCO) < 80% Ref and/or emphysema shown by 

CT were included; 4. The classification of COPD should according to the GOLD guidelines; 5. 

Patients with asthma who had a persistent airflow obstruction were excluded: Based on these 

criteria(1, 14-16), the GSE37768 (smokers vs nonsmokers), GSE119040 (emphysema vs 



non-emphysema patients), GSE1650 (severe vs mild emphysema patients), and GSE69818 

(GOLD-4 vs GOLD-1 COPD patients) were obtained. The sample types and platform 

information of each dataset are described in Table1. 

DEG identification and enrichment analysis 

To identify the DEGs, GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was used with 

each dataset. GEO2R is an interactive online tool that compares two groups of samples 

collected under the same experimental conditions(17). Adjusted P<0.05 and |log2fold 

change| ≥0.5 were used as cut-off values. GO analysis was used to investigate the biological 

functions of the DEGs, which involved determining the enriched biological process (BP), 

cellular component (CC), and molecular function (MF) terms using the functional annotation 

tool in the DAVID website(18, 19). The top 10 terms were visualized using ggplot2 v3.3.2. 

Logistic regression prediction model based on the core DEGs  

We used GSE37768 data as the training set and GSE8581 data as the test set which 

including 18. lung tissues from control subjects (FEV1/FVC＞0.7, FEV1 %pred＞80%) and 15 

lung tissues from COPD subjects (FEV1/FVC＜0.7, FEV1 %pred＜70%). Receiver operating 

characteristic (ROC) curves were used to visualize the model, area under the curve (AUC) 

was used to evaluate its diagnostic ability, and the Youden index was used to evaluate its 

sensitivity and specificity. 

Construction of the protein-protein interaction (PPI) networks 

A PPI network of each of the four sets of DEGs was constructed using the STRING 

website v11.0 (https://www.string-db.org/) and exported to Cytoscape software v3.7.1 for 

visualization(20). Molecular Complex Detection (MCODE) plugin in Cytoscape was used to 



identifies clusters that are highly interconnected in a network(21), the top three scored sub-

networks were then subjected to GO analysis. 

Gene set enrichment analysis (GSEA) of DEGs 

GSEA was used to ascertain the enriched Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways for the DEGs identified in each of the four comparisons. The normalized 

enrichment score (NES) was used to quantify the enrichment magnitude(22, 23). 

Participants and ethical approval 

Participants, comprising COPD patients and healthy participants (controls) were recruited 

from the China-Japan Friendship Hospital. COPD patients were diagnosed based on the 

Global Initiative for Chronic Obstructive Lung Disease (GOLD) clinical criteria. Lung tissues 

were collected from the COPD patients and controls scheduled for pulmonary lobectomy.  

The lung function and basic information of the participants are shown in (Table 2). 

All experimental work with humans was approved by the Ethics Committee of China-

Japan Friendship Hospital. All participants provided written informed consent. 

Cell culture and treatment with cigarette smoke extract (CSE) 

The murine lung epithelial (MLE) cell line MLE-12 was maintained in DMEM (Gibco, USA) 

containing 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. CSE 

was prepared by a modification of a previously published method(24). Briefly, one 3R4F 

reference cigarette containing 9.4 mg tar and 0.73 mg nicotine (University of Kentucky, USA) 

was bubbled into 10 mL of high-glucose Dulbecco’s Modified Eagle Medium (DMEM; Gibco, 

USA), and it was subsequently diluted to 5% in use. The MLE-12 cells were then treated with 

5% CSE for 24 hours. 



Immunohistochemical (IHC) analysis 

Lung tissues were fixed in 4% paraformaldehyde solution (Beyotime, China) for 24 h and 

then dehydrated, embedded in paraffin, and sectioned following routine methods. The 

sections were incubated with anti-HIF-3α antibody (1:100 dilution, Proteintech, China) 

overnight at 4°C, followed by incubating with anti-HRP antibody (1:200 dilution, SeraCare, 

China) at room temperature for 30 min. 3,3'-diaminobenzidine (DAB) was used for color 

development. The results were scored as the integrated optical density (IOD)/area as 

detected by Image-Pro Plus. 

Protein lysis and western blotting 

Equal amounts of protein (20 μg) were separated by 10% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene fluoride 

(PVDF) membranes (Immobilon-P membrane, Millipore). After 1 h of blocking with 10% milk, 

the membranes were incubated with anti-HIF-3α (ABclonal, China) or anti-GAPDH (ABclonal, 

China) antibody at 4℃ overnight. After incubation with horseradish peroxidase (HRP)-

conjugated secondary antibody (ABclonal, China) for 1 h, protein bands were developed in an 

automatic exposure machine (ProteinSimple, USA). 

The reactive oxygen species (ROS) Measurement 

MLE-12 cells were incubated with 10 μM DCFH-DA (Solarbio, China) at 37 °C for 30 min. 

The supernatant was removed, and the cells were washed with DMEM. Images viewed under 

a fluorescence microscope were obtained. 

Superoxide Dismutase Assay 

The relative superoxide dismutase (SOD) concentration in cell lysates was assessed 



using a superoxide dismutase (SOD) assay kit (Beyotime, China) according to the 

manufacturer’s instructions. 

CCK-8 Assay 

A CCK-8 assay was performed to detect cell viability according to the manufacturer’s 

protocol (Beyotime, China). Approximately 5 × 10
3
 cells were seeded in 96-well plates. The 

cells were treated with 10 μL of CCK-8 solution for 24 h and incubated in the dark for another 

2 h. The absorbance was measured at a wavelength of 450 nm. 

Statistical analysis  

All experiments were performed independently at least three times. The data are 

presented as mean ± standard error of the mean (SEM). Comparisons between the two 

groups were performed using two-tailed Student’s t-tests. P<0.05 was considered statistically 

significant.  

 

Results 

Identification of DEGs during the progression of COPD 

We identified DEGs (adjusted P<0.05 and |log2fold change| ≥0.5) in each of the four 

datasets. There were 577 upregulated genes and 482 downregulated genes in the GSE37768 

dataset (smokers vs nonsmokers), 1832 upregulated genes and 1798 downregulated genes 

in the GSE119040 dataset (emphysema vs non-emphysema patients), 1757 upregulated 

genes and 2851 downregulated genes in the GSE1650 dataset (severe vs mild emphysema 

patients), and 654 upregulated genes and 998 downregulated genes in the GSE69818 

dataset (GOLD-4 vs GOLD-1 COPD patients). 



GO analyses of DEGs 

Regarding the GO analysis of the GSE37768 dataset (smokers vs nonsmokers), the DEGs 

were mainly enriched in “negative regulation of apoptotic process”, “immune response”, and 

“inflammatory response”, functioned in “nuclear” and “perinuclear of cytoplasm” through 

“protein binding” and “receptor activity” (Figure 1a) (Figure S1a). Regarding the GSE119040 

dataset (emphysema vs non-emphysema patients), the DEGs were mainly enriched in 

“negative regulation of the apoptotic process”, “innate immune response”, and “extracellular 

matrix organization”, functioned in “cytoplasm” through “protein binding” (Figure 1b) (Figure 

S1b). Regarding the GSE1650 dataset (severe vs mild emphysema patients), the DEGs were 

mainly enriched in “apoptotic process”, “oxidation-reduction process”, “protein 

phosphorylation”, and “inflammatory response”, functioned in “cytoplasm” through “protein 

binding” (Figure 1c) (Figure S1c). Lastly, regarding the GSE69818 dataset (GOLD-4 vs 

GOLD-1 patients), the DEGs were mainly enriched in “immune response”, “inflammatory 

response”, and “oxidation-reduction process”, functioned in “extracellular exosome” through 

“protein binding” (Figure 1d) (Figure S1d). The cellular component results show, in the 

progression of COPD, the location where DEGs functions shift from the nuclear and 

perinuclear at the beginning, then to the cytoplasm and finally to the extracellular exosome. 

GO analyses of PPI networks 

To understand the relationships among the four sets of DEGs at the protein level, i.e. the 

relationships among the differentially expressed proteins (DEPs), and to analyze their 

functions in detail, we constructed four PPI networks. MCODE was applied for further analysis 

and the top three densely connected sub-networks in each PPI networks were identified, and 



then GO analyses were conducted for each of them(21).  

 Regarding smoking vs non-smoking, the functions of the three sub-networks were 

mainly enriched in “positive regulation of endothelial cell proliferation”, and “cellular response 

to zinc, cadmium, metal ions and erythropoietin” (Figure 2a). In the progression to 

emphysema, the functions of the three sub-networks were mainly enriched in “cytoplasmic 

translation”, “negative regulation of apoptotic process”, and “positive regulation of NF-kappaB 

signaling” (Figure 2b). To further explore the functions of the sub-networks, we analyzed the 

sub-networks in parts. The first sub-network consisted of parts a and b (Figure 2b.1). The 

enriched functions of part a included “mRNA splicing, via spliceosome”. The enriched 

functions of part b included “nuclear-transcribed mRNA catabolic process”, and “nonsense-

mediated decay”. Parts a and b interacted through NHP2L1. The second sub-network 

consisted of parts a, b, and c (Figure 2b.2). The enriched functions of part a included “ephrin 

receptor signaling pathway”. The enriched functions of part b included “protein ubiquitination”. 

The enriched functions of part c included “retrograde vesicle-mediated transport, Golgi to ER”. 

Parts a and c interacted through UBE2N. The third sub-network consisted of parts a and b 

(Figure 2b.3). The enriched functions of part a included “mitochondrial electron transport”, and 

“ubiquinol to cytochrome c”. The enriched functions of part b included “interferon-γ-mediated 

signaling pathway”.   

Regarding the progression from mild to severe emphysema, the functions of the three 

sub-networks were mainly enriched in “extracellular matrix organization”, “extracellular matrix 

disassembly”, “inflammatory response”, and “negative regulation of endodermal cell 

differentiation” (Figure 2c). Regarding the progression from GOLD-1 to GOLD-4, the functions 



of the three sub-networks were mainly enriched in “inflammatory and immune response”, 

“positive regulation of leukocyte chemotaxis”, “fat cell differentiation”, and “blood coagulation, 

fibrin clot formation” (Figure 2d). The second sub-network consisted of parts a and b (Figure 

2d.2). The enriched functions of part a included “innate immune response” and “cellular 

response to hydrogen peroxide”. The enriched functions of part b included “adaptive immune 

response”. The third sub-network consisted of parts a and b (Figure 2d.3). The enriched 

functions of part a included “positive regulation of RNA polymerase II promoter transcription” 

and “fat cell differentiation”. The enriched functions of part b included “extracellular matrix 

organization” and “positive regulation of ERK1 and ERK2 cascade”. 

Along with the GO analysis above, the results demonstrated a persistently enhanced 

oxidation-reduction process, immune and inflammatory response in the development of 

COPD. Besides, in smoker vs nonsmoker and emphysema vs non-emphysema patients, it 

showed a negative regulation of apoptotic process. Interestingly, in severe vs mild 

emphysema patients and GOLD-4 vs GOLD-1 patients, it showed a positive regulation of 

apoptotic process and intensified immune and inflammatory responses, suggesting that there 

may be a compensation threshold in the development of COPD, when the damage reach the 

threshold, the organism exhibits an injury response, which may be related to the lung 

inflammation persists even after smoking cessation in patients with COPD(1). 

Identification of core DEGs 

Taken together, the GO and PPI network analyses indicated that continuously immune 

and inflammatory responses and oxidative stress are exhibited in the development of COPD. 

We further identified and annotated fourteen DEGs that were consistently either upregulated 



or downregulated in the four comparisons (Table S1-4), 6 of which were upregulated (Figure 

3a) (C10orf10, MSMB, IGLV1-44, CYP1B1, ZNF385D, and MUC4) and 8 of which were 

downregulated (Figure 3b) (PPFIBP1, DDX17, FOSB, SVEP1, RABGAP1L, HIF3A, PTCH1, 

and PTPRD). By annotating these 14 DEGs, we found that they were associated with the 

comorbidities of COPD, such as anxiety and depression, atherosclerosis, and NSCLC, which 

would provide evidence for future in-depth studies on the comorbidities of COPD (Table S3, 

S4). 

Logistic regression prediction model based on the core DEGs 

A logistic regression prediction model based on the core DEGs was constructed to 

distinguish between COPD patients and non-COPD patients, using GSE37768 data as the 

training set and GSE8581 data as the test set. The AUC for the training set was 0.823 (Figure 

3c), while the sensitivity and specificity were 71.7% and 80%, respectively. The AUC for the 

test set was 0.750 (Figure 3d), while the sensitivity and specificity were 74.1% and 60.2% 

respectively. The results above demonstrated the core DEGs were not only meaningful in 

biological analysis, but also have efficacy in distinguishing COPD patients from non-COPD 

patients in clinical practice. 

GSEA of DEGs  

We performed a GSEA of the four sets of DEGs in order to identify core pathways that (1) 

were consistently upregulated or downregulated in all four comparisons and (2) had a NES ≥

1 in at least three of the comparisons. We identified 5 core pathways; the following 2 were 

continuously upregulated: “alanine aspartate and glutamate metabolism”, and “pathogenic 

escherichia coli infection”, while the following 3 were continuously downregulated:  



“phosphatidylinositol signaling system”, “oocyte meiosis”, and “ubiquitin mediated proteolysis” 

(Figure 4b) (Figure S2).  

PPI network of core DEPs and core pathways 

To investigate the interactions between the 5 core pathways and 14 core DEPs, we 

constructed a PPI network (the flow of the construction was shown as Figure S3). The results 

indicated that 42 proteins out of a total of 394 proteins in the 5 pathways interacted with 11 of 

the core DEPs (Figure 4a). Among the 42 proteins, there were 19 proteins belonged to the 

ubiquitin mediated proteolysis pathway, followed by 11, 6, 5, and 1 belonging to the oocyte 

meiosis, pathogenic escherichia coli infection, phosphatidylinositol signaling system, and 

alanine aspartate and glutamate metabolism pathways, respectively (Table S5). Among the 

14 core DEGs, HIF3A exhibited specialized interactions with 6 proteins that all belonged to 

the ubiquitin mediated proteolysis pathway, which further suggesting the interaction between 

HIF3A and ubiquitin mediated proteolysis pathway may play a key role in the progression of 

COPD. 

Validation of HIF-3α in vitro and in vivo. 

To validate our findings, we evaluated HIF-3α expression by IHC analysis and western 

blotting of lung tissue from COPD patients and healthy participants. IHC showed that HIF-3α 

protein expression (concentrated in alveolar epithelial cells) was decreased in COPD (Figures 

5a and 5b). Western blotting confirmed the HIF-3α protein downregulation in COPD (Figures 

5c and 5d). We also established a COPD cell model, and western blotting confirmed that HIF-

3α protein expression was downregulated in CSE-exposed MLE-12 cells (Figures 5e and 5f). 

The results above indicate the down-regulation of HIF-3α expression in COPD tissues in vivo 



and CSE-exposed MLE-12 cells in vitro.  

The HIF3A overexpression mitigates CSE induced ROS 

accumulation. 

Oxidative stress arises as a result of endogenous antioxidant defenses being genetically 

impaired and/or overwhelmed by the presence of ROS(25). SOD plays an important role in 

antioxidant activity and prevent ROS-initiated reactions(26). To further explore the interactions 

between HIF3A and oxidative stress, a lentivirus vector was used to promote HIF3A 

overexpression in CSE treated MLE-12 cells. Overexpression of HIF3A (Figure 6 a-b) 

decreased ROS production (Figure 6 e) and restored SOD level (Figure 6 c). Besides, the low 

cell viability (Figure 6 d) caused by CSE were alleviated after the HIF3A overexpression. The 

results above suggest that the HIF3A overexpression mitigates oxidative stress and further 

enhanced cell viability. 

 

Discussion 

As late diagnosis of COPD is a major factor in the poor prognosis of many patients(7-9), 

therefore, research on COPD should shifted to the period of pathological changes rather than 

the period of clinical symptoms. In this study, we conducted a GET analysis and divided 

COPD development into four developmental stages based on etiology, pathology, and the 

worsening of clinical symptoms (exposure to smoking, from non-emphysema to emphysema, 

from mild to severe emphysema, and from GOLD-1 to GOLD-4) and analyzed GEO 

microarray datasets related to these stages, conducted a holistic analysis by integrating these 

four datasets to uncover the gene function characteristics in each of the progression stage 



and unveiling the mechanisms underlying. 

GET analysis is a novel approach, and it may lead to improved understanding of 

underlying pathogenic mechanisms and identification of novel targets(10). By conducting a 

GET analysis in this study, we revealed that, during the progression of COPD, immune and 

inflammatory response was continuously enriched, accompanied by intensified oxidation-

reduction process, positive regulation of apoptotic and leukocyte chemotaxis, and cellular 

response to hydrogen peroxide. These functions were especially intensified from mild to 

severe emphysema and from GOLD-1 to GOLD-4. This suggests that patients exhibit 

persistently increased inflammation and oxidative stress after the emphysema stage develops, 

which further highlights, in clinical practice, special attention should be paid to identifying 

emphysema and to monitoring and controlling oxidative stress, which provides more precise 

insights into the GOLD Report.  

Given the sustained progression of oxidative stress and sustained immune and 

inflammatory responses, we identified 14 core DEGs that were continuously upregulated or 

downregulated in all four comparisons. Of these, 6 were continuously upregulated (C10orf10, 

MSMB, IGLV1-44, CYP1B1, ZNF385D, and MUC4) and 8 were continuously downregulated 

(PPPFIBP1, DDX17, FOSB, SVEP1, RABGAP1L, HIF3A, PTCH1, and PTPRD). These core 

DEGs were associated with the comorbidities of COPD such as anxiety and depression, 

atherosclerosis, and NSCLC (Table S3, S4). The results above further support the idea that 

COPD is a systemic syndrome rather than a uniform disease entity(27, 28).  

In addition, to identify the potential pathways involved in the development of COPD, we 

performed GSEA to each of the four dataset, and identified 5 core pathways. Two of them 



were continuously upregulated (“alanine aspartate and glutamate metabolism”, “pathogenic 

escherichia coli infection”), and three of them were continuously downregulated (“oocyte 

meiosis”, “phosphatidylinositol signaling system”, and “ubiquitin mediated proteolysis”).  

To elucidate the potential mechanisms underlying the development of COPD, the 

proteins encoded by the core DEGs and the enriched core pathways were used to construct a 

PPI network. Among the core DEPs, HIF-3α attracted our attention, as it exhibited specialized 

interactions with 6 proteins that all belonged to the ubiquitin mediated proteolysis pathway. 

HIF3A is a member of the hypoxia-inducible transcription factor (HIF) family, which are master 

regulators of the adaptive cell response to decreased oxygen levels, controlling the 

expression of many genes in an oxygen-dependent manner, the product of these genes were 

involved in hematopoiesis, angiogenesis, iron transport, oxidation stress, and extracellular 

matrix synthesis(29). There are three members in this family; HIF1A, HIF2A (EPAS1) and 

HIF3A. Among them, HIF3A is the most recently identified member. Compared with HIF-1α 

and HIF-2α, HIF-3α has dual functions: Inhibition of the activities of HIF-1α and HIF-2α, and 

regulation of its own target genes in a response to hypoxia(30, 31). It can upregulate genes 

involved in glucose and amino acid metabolism, apoptosis, proteolysis, p53 signaling, PPAR 

signaling, Jak-STAT signaling and NOD-like receptor signaling(31). In addition, it can inhibit 

the production of ROS and reduce oxidative stress levels(31-34). Therefore, decreased HIF3A 

may be a major factor that causes and aggravates the oxidative stress in COPD. 

In the PPI analysis of core DEPs and core pathways, the interaction between HIF3A and 

von Hippel-Lindau (VHL) attracted our attention (Figure 5). Under normal oxygen partial 

pressure, HIF-3α can be degraded by the pVHL ubiquitin-proteasome due to the shared 



common oxygen-dependent degradation (ODD) domain in HIF-3α. The ability of VHL to 

degrade HIF-3α is dependent on the proline 490 residue of HIF-3α and this is increased in the 

presence of prolyl hydroxylase (PHD), a cellular sensor for low oxygen(35). PHD catalyzes 

the hydroxylation of key amino acid residues in the HIF-α ODD domain(36, 37). This is 

followed by VHL binding to HIF-α and inducing degradation via the ubiquitin-proteasome 

pathway(38, 39). A previous study showed that HIF-3α expression was elevated during acute 

hypoxia and decreased slowly after 14 days of hypoxia, accompanied by sustained HIF-1α 

and HIF-2α upregulation(40, 41). Combined with these results above, the transient elevated 

HIF-3α may be due to the inhibited PHD and VHL under hypoxia, and in chronic hypoxia 

(which is often occurred in COPD), HIF-3α downregulation may be due to the competition 

with HIF-1α and HIF-2α in binding to the HIF-1β subunits(42). In vitro and in vivo 

experiments showed that, under hypoxia, HIF-1α and HIF-2α upregulation can lead to ROS 

accumulation(32), HIF1A and HIF2A knockdown reduces the oxidative stress(33, 34). 

According to the GOLD-2022 report(1), “oxidative stress may be an important amplifying 

mechanism in COPD”. Oxidative stress is an imbalance between oxidants and antioxidants in 

favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular 

damage(43), and as HIF3A has transcriptional activation ability under hypoxia and is a 

negative regulator of HIF1A and HIF2A(31, 42), the downregulated HIF3A in our study may be 

one of the reasons for the persistent elevated oxidative stress level and the amplifying 

mechanism in COPD. 

Another of the core DEPs, the PTCH1 (patched 1) protein, also attracted our attention. 

According to the results of a GWAS on COPD, PTCH1 showed the strongest positive 



associations with FEV1/FVC(44). PTCH1 encodes a member of the patched family of proteins 

and a component of the hedgehog signaling pathway. Similarly, the 2022 GOLD report also 

indicated that HHIP, which is a part of the same hedgehog signaling pathway as PTCH1, is 

highly correlated with COPD phenotype, but the exact pathogenic mechanism remains 

unclear, suggesting that our analytical approach can indeed identify key factors in the 

pathogenesis of COPD. 

In this study, we applied GETomics approach to conduct a holistic analysis toward 

COPD, identified oxidative stress was especially intensified from mild to severe 

emphysema and from GOLD-1 to GOLD-4, which provides more precise insights into the 

GOLD Report and clinical practice. According to the continuously intensified oxidative 

stress, immune and inflammatory response, we identified and annotated 14 core DEGs 

that were consistently either upregulated or downregulated in the four comparisons, and 

found these core DEGs were related to the comorbidities of COPD. By constructing and 

validating the prediction model, we discovered these 14 core DEGs were not only 

meaningful in biological analysis, but also have efficacy in differentiating COPD patients 

from healthy individuals. Through further GSEA and PPI analysis, we found the highly 

interacted HIF3A and ubiquitin mediated proteolysis pathway may contribute to the 

oxidative stress in COPD pathogenesis. Finally, a lentivirus was used to promote the 

HIF3A overexpression, the results suggest overexpression of HIF3A mitigates oxidative 

stress and further enhanced cell viability in CSE treated MLE-12 cells. There were two 

earlier studies have reported the HIF3A in COPD, one of the study demonstrated the 

HIF3A mRNA was downregulated in the tibialis anterior muscle of severe COPD patients, 



which was consistence with our study(45). However, another study reported HIF-3α was 

upregulated in the lung of mice for 15 weeks smoking(46). As the HIF3A is the most 

recently identified member of the HIF family, the specific regulatory mechanisms of 

HIF3A still need further research. This current study still has some limitations. We only 

assessed HIF3A expression in lung and MLE-12 cells, so its expression in serum and sputum 

remains unknown. Serum and sputum are more easily assessed and therefore more widely 

used in clinical practice to assess biomarkers, which we intend to carry out in the future. 

Conclusion 

In conclusion, the results of the GET analysis strongly indicate that special attention 

should be paid by clinicians to identifying of emphysema and monitoring and controlling 

COPD patients’ oxidative stress level. Besides, the 14 core DEGs have certain efficacy in 

differentiating COPD patients form healthy individuals, and may related to the comorbidities. 

Furthermore, the overexpression of HIF3A can alleviate the oxidative stress in COPD. 
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Figure 1. Gene Ontology (GO) enrichment analyses for upregulated genes. GO enrichment 

analyses for a) smokers vs nonsmokers ; b) emphysema vs non emphysema patients; c) severe 

vs mild emphysema patients; and d) GOLD-4 vs GOLD-1 patients. 

  



 

Figure 2. Protein–protein interaction (PPI) network of differentially expressed proteins (DEPs). 

Graphs 1, 2, and 3 shows the top three sub-networks of DEGs and graph 4 shows the 

enriched Gene Ontology (GO) biological process (BP) terms for a) smoking vs non-smoking, 

b) emphysema vs non-emphysema patients, c) severe vs mild emphysema patients, and d) 

GOLD-4 vs GOLD-1 COPD patients. Triangles represent upregulated DEPs, "V" shapes 

represent downregulated DEPs, and circles represent proteins produced by the string 

database, have no state in our data. Larger node size and a more orange color indicate 

higher degree value. Thicker edges represent stronger interactions (higher combined_score 

of DEPs). 

  



 

Figure 3. Venn and Logistic regression analysis. Venn diagrams showing a) 6 consistently 

upregulated DEGs and b) 8 consistently downregulated DEGs. ROC curve analysis of the 

Core Genes prediction model. c) Construction of the logistic prediction model. d) Validation of 

the logistic prediction model. 

  



 

Figure 4. PPI network of consistently upregulated or downregulated DEPs and consistently 

enriched pathways. a) Black solid circles indicate that the protein is encoded by a core DEG. 

Red, green, yellow, orange, and blue solid circles indicate that the protein belongs to the 

UBIQUITIN MEDIATED PROTEOLYSIS pathway (continuously downregulated), OOCYTE 

MEIOSIS pathway (continuously downregulated), PATHOGENIC ESCHERICHIA COLI 

INFECTION pathway (continuously upregulated), PHOSPHATIDYLINOSITOL SIGNALING 

SYSTEM pathway (continuously downregulated), and ALANINE ASPARTATE AND 

GLUTAMATE METABOLISM pathway (continuously upregulated), respectively. b) The 

codownregulation pathway in strongest interaction with core DEPs. 

  



 

Figure 5. HIF-3a is reduced in the lungs of COPD patients and cigarette smoke extract (CSE)-

treated murine lung epithelial (MLE)-12 cells. a) IHC showed that HIF-3a was markedly lower 

in COPD patients than controls. Original magnification ×40. Scale bar: 20 µm. b) IHC score 

(mean ± SEM) in airway epithelial cells based on 10 image fields (40X) per sample is shown 

in the right panel. c, d) Western blots of human lung homogenates from COPD and control 

patients that were probed with an anti-HIF-3a antibody (normalized to GAPDH). e, f) Western 

blots of CSE-exposed MLE-12 cells (exposed for 24 h) that were probed with an anti- HIF-3a 

antibody (normalized to GAPDH) **P < 0.01; ***P < 0.005; ****P < 0.001. 

  



 

Figure 6. HIF3A overexpression mitigates CSE-induced ROS accumulation and the 

decreased cell viability in MLE-12. a–b) MLE-12 cells were transfected with HIF3A 

overexpression vector (HIF3A OE) or control vector. HIF-3a protein levels were detected by 

Western blot analysis and normalized to GAPDH levels. c) SOD levels in each group. d) Cell 

viability of each group was analyzed by the CCK-8 assay, and all values were normalized to 

those of the control group. e) Images of intracellular ROS stained by DCFH-DA were captured 

with a fluorescence microscope. Bar: 20µm. The results were presented as the means ± 

S.E.M. for three independent experiments. *P< 0.05; **P < 0.01; ns: P>0.05. 



Table S1. List of consistently upregulated genes in the four comparisons. 

 

 

 

Table S2. List of consistently downregulated genes in the four comparisons. 

 

 

 

 

 

 

Names total elements 

 

1 UP GSE37768 

2 UP GSE119040 

3 UP GSE1650 

4 UP GSE69818 

6 C10orf10  

MSMB  

IGLV1-44    

CYP1B1    

ZNF385D 

MUC4 

Names total elements 

1 DOWN GSE37768 

2 DOWN 

GSE119040 

3 DOWN GSE1650 

4 DOWN GSE69818 

8 PPFIBP1 

DDX17 

FOSB 

SVEP1 

RABGAP1L 

HIF3A  

PTCH1 

PTPRD 

 



 

Table S3. Annotation of co-differentially upregulated genes in the four comparisons. 

Name Full name Annotation 

C10orf10  DEPP1 autophagy 

regulator 

A transcriptional target of FOXO3, impairs cellular reactive 

oxygen species (ROS) detoxification. C10orf10 

overexpression elevated cellular ROS levels and sensitized 

cells to H2O2- and etoposide-induced neuronal cell death2. 

MSMB microseminoprotein 

beta 

MSMB is synthesized by the epithelial cells of the prostate 

gland and secreted into the seminal plasma. A previous 

study identified the increased expression of MSMB was 

accompanied by the characteristic of small airway epithelial 

secretory cell changes in COPD34. 

IGLV1-44 immunoglobulin 

lambda variable 

1-44 

IGLV1-44 was significantly elevated in POEMS 

(polyneuropathy, organomegaly, endocrinopathy, 

monoclonal gammopathy, and skin changes) syndrome 

compared to the IGLV1-40 (the only two germlines which 

produce IGLV)
5
 

CYP1B1 cytochrome P450 

family 1 subfamily B 

member 1 

CYP1B1 protein is a member of the cytochrome P450 

superfamily of enzymes. Cytochrome P450 proteins are 

monooxygenases that catalyze many reactions involved in 

drug metabolism and the synthesis of cholesterol, steroids, 

and other lipids. Lung macrophages stimulated by fine 

particulate matter (PM2.5) can upregulate CYP1B16 

ZNF385D zinc finger protein 

385D 

ZNF385D may influence several of the negative symptoms 

of schizophrenia (according to a recent meta-analysis of two 

genome-wide association studies [GWAS]7). Therefore, 

elevated ZNF385D may be associated with the anxiety and 

depressive symptoms  that often occur in patients with 

COPD8. 

MUC4 mucin 4, cell 

surface associated 

MUC4 encodes a cell-surface glycoprotein that is a 

transmembrane protein with a large extracellular polypeptide 

core, and it is upregulated after e-cigarette exposure9. 

 

 

 

 

 

 

 



Table S4. Annotation of co-differentially downregulated genes in the four comparisons. 

PPFIBP1 PPFIA binding 

protein 1 

PPFIBP1 protein is a member of the LAR 

protein-tyrosine phosphatase-interacting protein (liprin) 

family, and is an oncogene, based on in vitro focus 

formation assays and in vivo tumorigenicity assays10. 

DDX17 DEAD-box helicase 

17 

DDX17 protein was involved in embryogenesis, 

spermatogenesis, cellular growth and division. 

Gefitinib-resistant cells have higher DDX17 expression 

than gefitinib-sensitive cells in non-small-cell lung 

cancer (NSCLC) patients, DDX17 upregulation 

enhances gefitinib resistance, while DDX17-silenced 

cells exhibit partially restored gefitinib sensitivity11 

FOSB FosB 

proto-oncogene 

FOSB protein has been implicated as a regulators of 

cell proliferation, differentiation, and transformation. 

FOSB was downregulated in NSCLC patients and was 

negatively correlated with pathological grade12. 

SVEP1 sushi, von Willebrand 

factor type A, EGF 

and pentraxin domain 

containing 1 

SVEP1 protein increases leukocyte recruitment to 

atherosclerotic plaques and promotes atherosclerotic 

plaque formation13. 

RABGAP1L RAB GTPase 

activating protein 1 

like 

RABGAP1L deletion at the 1q25.1 locus increased the 

risk of systemic lupus erythematosus in Korean 

women14. 

HIF3A hypoxia-inducible 

factor 3 subunit alpha 

HIF3A is a member of the hypoxia-inducible 

transcription factor (HIF) family that regulate many 

adaptive responses to hypoxia. HIF3A was 

downregulated in muscle in patients with COPD 

GOLD-4 compared to GOLD-115. 

PTCH1 patched 1 PTCH1 protein is a member of the patched family and 

is a component of the hedgehog signaling pathway. 

According to the results of a GWAS toward COPD, 

PTCH1 showed the strongest positive associations with 

FEV1/FVC16. 

PTPRD protein tyrosine 

phosphatase 

receptor type D 

PTPRD protein is a member of the protein tyrosine 

phosphatase (PTP) family. PTPs are signaling 

molecules that regulate cell growth, differentiation and 

oncogenic transformation. PTPRD is downregulated in 

lung adenocarcinoma tissue and is significantly 

correlated with lung adenocarcinoma staging17. 

 

 

 

 

  



Table S5. List of proteins (belonging to key pathways) that have direct interactions with core 

differentially expressed proteins (DEPs). 

Pathway 

 

 

 

Core Genes 

UBIQUITIN 

MEDIATED 

PROTEOLYSIS 

OOCYTE 

MEIOSIS 

PATHOGENIC 

ESCHERICHIA 

COLI 

INFECTION 

PHOSPHATID

YLINOSITOL 

SIGNALING 

SYSTEM 

ALANINE 

ASPARTATE 

AND 

GLUTAMATE 

METABOLISM 

CORE 

GENE 

PTCH1 NEDD4 

ITCH 

WWP1 

SMURF2 

WWP2 

NEDD4L 

SMURF1 

CCNB1 

CDK1 

CDH1 

ACTB 

CTNNB1 

PIK3CA 

PIK3CG 

PTEN 

  

DDX17 SKP1 

MDM2 

UBE2I 

WWP2 

AR NCL 

CTNNB1 

   

HIF3A RBX1 

VHL 

UBE2D3 

UBE2D1 

CUL2 

     



UBE2D2 

RABGAP1L KLHL9 

KLHL13 

CDC16  DGKA   

CYP1B1 BRCA1 PGR ACTB    

FOSB  MAPK12 

MAPK1 

MAPK3 

SMC3 

SMC1A 

    

PTPRD   ABL1 PIK3CA 

PTEN 

 PPFIBP1 

PPFIBP1  YWHAZ  PI4KB  PTPRD 

SVEP1   ITGB1 DGKH   

MSMB  AR   ADSL  

MUC4   CDH1    

ZNF385D       

C10orf10       

 

 

 

 

 

 

 



Figure S1. Gene Ontology (GO) enrichment analyses for downregulated genes. GO enrichment 

analyses for a) smokers vs nonsmokers ; b) emphysema vs non emphysema patients; c) severe vs mild 

emphysema patients; and d) GOLD-4 vs GOLD-1 patients. 

 



 

Figure S2. Gene Set Enrichment Analysis (GSEA) regarding the four stages in COPD. Identified 2 

co-upregulated pathways (a, b), and 3 co-downregulated pathways (c, d) (FIgure 5b). 



 

 

Figure S3. The flow of the core DEGs and core pathways PPI analysis procedure. 
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