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ABSTRACT 

Background: Pulmonary arterial hypertension (PAH) is a heterogenous and complex pulmonary 

vascular disease associated with substantial morbidity. Machine learning algorithms (used in 

many PAH risk calculators) can combine established parameters with thousands of circulating 

biomarkers to optimize PAH prognostication, but these approaches do not offer the clinician 

insight into what parameters drove the prognosis. The approach proposed in this study diverges 

from other contemporary phenotyping methods by identifying patient-specific parameters 

driving clinical risk. 

Methods: We trained a random forest (RF) algorithm to predict 4-year survival risk in a cohort 

of 167 adult PAH patients evaluated at Stanford university, with 20% withheld for (internal) 

validation. Another cohort of 38 patients from Sheffield university were used as a secondary 

(external) validation. Shapley values, borrowed from game theory, were computed to rank the 

input parameters based on their importance to the predicted risk score for the entire trained RF 

model (global importance) and for an individual patient (local importance).  

Results: Between the internal and external validation cohorts, the RF model predicted 4-year 

risk of death/transplant with a sensitivity and specificity between 71.0-100% and 81.0-89.0%, 

respectively. The model reinforced the importance of established prognostic markers, but also 

identified novel inflammatory biomarkers that predict risk in some PAH patients.  

Conclusion: These results stress the need for advancing individualized phenotyping strategies 

that integrate clinical and biochemical data with outcome. The computational platform presented 

in this study offers a critical step towards personalized medicine in which a clinician can 

interpret an algorithm’s assessment of an individual patient. 
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INTRODUCTION  

Pulmonary arterial hypertension (PAH) is a highly morbid disease characterized by complex 

pathobiology and variable clinical presentation [1]. The availability of numerous approved [2] 

and emergent [3] PAH medications has expanded treatment options used clinically to limit 

morbidity and prevent premature death. However, pharmacotherapeutic initiation and dose 

escalation is guided by risk assessment [4], emphasizing the importance of data and algorithms 

that clarify prognosis in individual patients. In turn, pathogenetic and phenotypic heterogeneity 

across the PAH spectrum introduce unique challenges to precision-based risk stratification 

methods.  

Several validated risk estimation tools are now available for PAH and have transformed 

clinical decision-making by allowing evidence-based prognostication at point-of-care [5, 6], but 

these algorithms consider a relatively narrow range of variables that can’t account for disease 

heterogeneity [7-9]. Utilizing machine learning algorithms allows contemporary calculators to 

compute risk estimates from robust datasets that can include thousands of circulating biomarkers 

[10, 11] across diverse PAH populations, thereby expanding the gamut of patient-specific 

measurements available for compiling risk estimates. However, a clinician utilizing these 

complex multi-variate models on a patient would only be presented with a numeric risk score 

without any explanation of how the model reached its calculation. Therefore, these models 

require an analytic strategy to generate an intuitive readout that explains how each marker 

contributed to the final prediction, which would mark a significant advance towards 

individualizing clinical decision-making in PAH.  

The overall goal of this project was to showcase a computational platform that i) integrates 

big data inclusive of biological and clinical parameters to generate a composite risk profile and 



ii)  ranks the contribution of all patient parameters to the computed risk score for an individual 

patient (using game theory). Combining these two mathematical principals for risk stratification 

is positioned to advance the use of artificial intelligence for personalized clinical-decision 

making in PAH.  

METHODS 

To demonstrate the aforementioned computational platform for doctor-machine interaction in 

PAH prognostication, we utilized the dataset presented in ref. [7] (referred to here as the Case 

Study dataset) to train an RF model that predicts the probability of death/transplant within 4-

years. Once a suitably accurate model is developed, we then applied game theory principles [12] 

to explain overall model structure and showcase how a clinician could interpret the prediction for 

a specific patient.  

 

Case Study Dataset - Study population and design:  

The study analyzed data from a prospective observational cohort of 281 PAH patients evaluated 

at Stanford University (Stanford, CA) who had banked peripheral blood samples between 2008 

and 2014. This dataset has been extensively described in ref. [7]. Within this cohort, 114 patients 

were known to be alive and transplant-free before the 4-year follow-up, but not evaluated beyond 

this point. Therefore, this study considers 167 patients (demographics shown in Table 2) with a 

documented 4-year outcome (N = 93 transplant-free survival vs. N = 74 death or lung 

transplantation), where the 4-year cut-off was chosen to achieve a roughly 50% event rate 

because machine learning algorithms tend to produce erroneous classifiers when trained on 

imbalanced datasets.  



 For each patient, the model was trained on 93 patient parameters (Fig. 1a; all variables 

defined in Table 1) that included: (1) demographics; (2) PAH subgroup; (3) functional metrics 

and standard clinical bloodwork; (4) invasive hemodynamic measurements; (5) lung function 

measurements; (6) selected echocardiographic parameters; and (7) an exploratory proteomic 

immune panel of 48 cytokines, chemokines, and growth factors measured using a Bio-Plex 

multiplex immunoassay (Bio-Rad Inc, Hercules, CA) (see Fig. 1b).  

 

Feature Engineering 

Of the 93 patient parameters, 4 categorical parameters (sex; ethnicity; PAH subgroup; 

and presence of pericardial effusion) were one-hot-encoded (i.e., coding categorical variables as 

binary vectors) [13] to arrive at a dataset with 167 observations and 104 features.  

The dataset had 863 (<5% of total data matrix) missing values. For continuous variables 

that were distributed normally, each missing value was replaced with the feature mean. For 

categorical variables or continuous variables that were not distributed normally, the missing 

values were replaced with the feature mode.  

 To reduce the dimension of the original dataset, we performed recursive feature 

elimination (RFE) (viz., 10,000 trees trained at each iteration; each tree is allowed 4 decision 

splits; 3% of the least important features are removed at each iteration) as is described in ref. [14] 

(using Matlab 2020b, Mathworks). The variable set producing the lowest out-of-bag 

classification error [15] contained 23 features, which was too high for a predictive model with 

167 observations. Therefore, we allowed the RFE algorithm to run until less than 10 features 

remained, thus producing a final data matrix with 9 features.  

 



Developing the final predictive model and validation:   

A final RF model (with 10,000 trees based on plateaued out-of-bag classification error; 

each tree was allowed to grow to a maximum depth of 4 generations) was trained on 80% of the 

observations, with 20% withheld for (internal) validation (using “sklearn” library [13] in Python 

3.9.6). An additional external validation cohort of 38 PAH patients from the University of 

Sheffield, collected from the Sheffield Pulmonary Vascular Disease Unit between 2008 and 

2014, was also utilized to assess model performance. Therefore, the results of this study will 

reference the internal validation cohort (20% of the Stanford cohort -see Table 2- withheld for 

testing) and the external validation cohort (the Sheffield cohort, see Online Supplementary 

Material O2, trained on 100% of the Stanford patients).  

Because the overall objective of this study was to showcase model interpretability, and 

there is no point in interpreting a model that is not sufficiently accurate, we compare the 

performance of the final trained RF model against the REVEAL 2.0 calculator [6] as a standard 

for sufficient model accuracy. All sensitivity/specificity values reported in the manuscript were 

computed by generating a receiver operating curve (ROC) for computed probability values 

(when evaluating the RF model) or REVEAL 2.0 risk score.   

 

RF model interpretability:  

 In 1951, Lloyd Shapley built on the concept of Game Theory by deriving an equation for 

the marginal contribution of a single player in a cooperative game [16], which won him the 

Nobel Prize in economics. The Shapley value is computed for each player in a cooperative game 

to fairly determine the marginal contribution of that player, which -through interaction between 

players- might be different than the player’s individual score. This concept has been expanded to 



“explain” the marginal contribution of each feature in multivariate tree-based machine learning 

(ML) models [12], which allows for both global (how input features rank and contribute to the 

overall model prediction) and local (how input features rank and contribute to an individual 

model prediction) interpretability of feature contribution and interaction.   

 SHAP values and the reported plots that use them were computed with the TreeExplainer 

SHAP package in Python [12]. Even though the direct computation of Shapley values would be 

too computationally expensive, especially as the number of considered features would be 

increased, the computational pipeline outlined in ref. [12] is fast for even high-dimensional 

problems, and guarantees “local accuracy” and “consistency” [17]. Global model structure was 

explored using violin plots. Local model interpretability (defined as the degree that a human can 

understand the cause of a model’s decision), used to understand the model prediction for a 

specific patient, was assessed using violin plots and decision plots.  

  

RESULTS 

Random Forest Model of Risk (a case study): 

After performing RFE, the final model consisted of 9 features: (1) 6MWD; (2) DLCO; 

(3) NT-proBNP; (4) Lymph (%); (5) Lymph (abs); (6) IL-9; (7) IL-2; (8) SCF; and (9) HGF, 

which all had significantly different means between high risk and low risk patients (see. Fig. 2, 

see Table 1 for acronym reference). The area under the ROC (AUC) shown in Fig. 2 revealed 

that all 9 markers fairly discriminated high vs. low-risk patients, but the discrimination accuracy 

is considerably improved by combining all 9 into a multivariate model (see Fig. 3). It’s critical to 

note that we are not suggesting for these 9 features to be clinically utilized based on this 

relatively small patient cohort. Although we are encouraged by the fact that our RFE algorithm 



identified markers commonly accepted as prognostic, these metrics would need to be validated in 

larger prospective studies. An expanded discussion of these results is available in the Online 

Supplement O1.  

For the internal validation cohort (see Fig. 3b), the RF model accurately predicted 15 of 

17 patients as high risk. The model’s computed probability of 4-year all-cause mortality risk in 

the internal validation cohort produced an AUC of 0.94 (95% confidence interval, CI = 0.79-

1.00), with a sensitivity and specificity of the RF model of 1.00 and 0.89, respectively (see Fig. 

3c). Pointwise confidence intervals on the sensitivity were computed using vertical averaging 

from 1000 sampled bootstrap replicas. For the external validation cohort, which used an estimate 

of the 6MWD and serum NT-proBNP measurements (see Online Supplement O2), the model 

revealed an AUC of 0.81 (95% CI = 0.64-0.92) and sensitivity and specificity of 0.71 and 0.81, 

respectively (see Fig. 3c).  

 

Global and local Interpretability of the Random Forest Model:  

Given that the RF model has 10,000 trained decision trees, it’s not possible to intuitively 

understand what parameters are driving model prediction and how they influence the overall 

computed score, which is referred to as the “global model structure.” While there have been 

numerous methods proposed for evaluating global model structure (e.g., ranking feature 

importance [18]), our approach can also be applied to an individual patient (described in the next 

section). 

Fig 4 shows a violin summary plot of SHAP values for the training (Fig. 4a) and internal 

validation (Fig. 4b) datasets. The top 3 features are the same in both datasets, thus suggesting a 

consistent global model structure between the training and validation cohorts. The features listed 



are those identified as “most important” through RFE and ordered along the vertical axis based 

on global feature importance in the RF model. A single dot represents a patient, and the width of 

the violin is representative of the number of patients that fall into that region. As an example, 

based on the limited case study presented here, the violin plots shown in Fig. 4 allows us to 

conclude that a high 6MWD can reduce the probability of death in 4-years by up to 20%, but the 

long tail towards positive SHAP values seen for IL2 and IL9 would suggest that, even though 

they are at the bottom of the global importance plot, these cytokine levels could be extremely 

important for certain individuals.  

 

Local Interpretability of the trained RF Model for a specific patient: 

When asking a trained RF model to make a risk prediction for a new incoming patient, 

the algorithm runs that new patient’s data through the 10,000 trees that were generated during the 

training process. Each tree classifies the patient as high or low-risk, and the algorithm then takes 

a majority vote to make its prognosis. The numerical divide of how each tree voted also offers an 

estimate of probability, although a calibration plot showed that, for the case study dataset 

considered here, the model probability values were overly conservative and unresponsive to 

Platt’s scaling [19], which was likely due to a small validation cohort. Therefore, if a clinician is 

interested in knowing how each patient measurement contributed to the risk score, it is again not 

possible for a human to make sense of this prediction from 10,000 decision trees.  

Fig 5a shows decision plots for the internal validation cohort with dashed lines 

representing the two patients who were incorrectly predicted to have a high 4-year risk of 

mortality (note that the feature order is identical to Fig. 4b). The vertical axis lists the features in 



order of importance for that specific cohort of patients, so the order might be different if some 

patients were removed or if only one patient was being considered. 

Decision plots are used to show how a model -for any individual patient or for combined 

patients- reaches the predicted 4-year risk score. All decision tree lines start at the same point (at 

a risk score of 0.55 in Fig. 5a) along the bottom horizontal axis, which represents the baseline 

predicted score before any of the features were considered. The SHAP values (i.e., the change in 

the score in response to a specific feature) accumulate from the base value to arrive at the RF 

model’s final score on the top horizontal axis.  

 

Case example 1. In Fig. 5a, we focus on two random patients, indicated by arrows. Both patients 

had a relatively normal 6MWD and NT-proBNP and, therefore, based on the current approach to 

risk stratification, might be expected to harbour similar risk profiles. However, patient 1 had 

abnormally low IL2 and IL9 levels based on comparisons in ref. [7] (also see Fig. 2), which in 

spite of normal exercise tolerance and markers of heart failure, put them firmly in the high-risk 

group. Alternatively, all 9 metrics for patient 2 were in the normal range, thus resulting in 

assignment to the low risk group.  

Fig. 5b shows a decision tree for the internal validation cohort that considers the 

cumulative effect of first-order interactions between the features. Here we see that interactions 

can certainly drive the final risk score for some patients but are all ranked as the “least 

important” features for the model output when the entire internal validation cohort is considered. 

For this reason, and because considering interactions significantly complicate the interpretability 

of the final model, we omit them for single-patient analysis in Fig. 6. 

 



Case example 2. Fig. 6 (a and b) shows decision plots for two randomly selected patients from 

the internal validation cohort. Here we see that both patients were assigned a NYHA-FC=1 with 

a similar REVEAL 2.0 risk score, but Patient 1 had a mortality event within 4 years of study 

enrolment. The RF model trained in this case study accurately predicted Patient 1 to be in the 

high-risk group, driven primarily by circulating levels of IL2 and IL9, despite low-risk 6MWD 

and NT-proBNP. The profile for patient 2 included all 9 markers within the low-risk range, 

corresponding to correct assigned to the low-risk group.  

DISCUSSION 

Prior reports using trained machine learning models (e.g., RF models) in PAH have been 

effective for identifying biomarkers that contribute to risk estimation across patient cohorts [20-

22]. However, these algorithms produce a single classification or score when asked to make a 

prediction for a specific patient, so the clinician might be hesitant to make treatment decisions 

based on “black box” predictions. Therefore, if the clinician can interact with the algorithm and 

is graphically presented (using decision plots) how the parameters are ranked in the final 

decision, that clinician would be better suited to generate a treatment strategy based on the 

algorithm’s assessment or possibly overrule the algorithm based on their own clinical intuition.  

In this paper, we use a case-study to introduce a platform that generates a graphical 

explanation of the RF model’s prognosis for an individual PAH patient (a step towards 

personalized medicine). Because the cohort available for our case study had a limited number of 

patients for model training, we utilized RFE to reduce the 93 available patient measurements to 

9. We then showed in two validation cohorts that our RF model’s accuracy was comparable to 

the REVEAL 2.0 calculator (an expanded discussion on comparing against the REVEAL 2.0 

calculator is available in Online Supplement O3).  



 Global interpretability studies showed that the general structure of the trained RF model 

heavily skewed towards known prognostic markers of PAH (e.g., exercise tolerance and heart 

failure). However, the violin plots for most of the circulating inflammatory markers in Fig. 4 had 

long tails, thus suggesting that they could also be a major driver of the prognostic score for some 

patients. This is confirmed by decision plots for the entire internal validation cohort (see Fig. 5), 

which showed that -consistent with multiple previous studies [10, 11, 23, 24]- inflammatory 

markers and their occasional interaction with other metrics can heavily influence the prognosis. 

This is also seen when looking at individual decision plots from randomly selected patients in 

Fig. 6. As an example, Patient 1 was placed in a low-risk category based on NYHA-FC and 

REVEAL 2.0 score, which don’t consider biomarkers of inflammation. However, the RF model -

trained with circulating markers of inflammation- correctly classified this patient as high-risk and 

the decision plot shows that it was the decreased levels of circulating cytokines that drove that 

prognosis. Interestingly, both IL2 and many other inflammatory cytokines are known to be 

upregulated in PAH patients, relative to controls (CTLs) [7, 25-27], but are reduced in PAH 

patients with poor survival. This would suggest that the presence of these markers could be 

protective and that the time-course of cytokine levels is itself prognostic, but this would need to 

be explored in future studies.  

A major limitation of the current study was the relatively modest cohort available for 

model training and (internal and external) validation. This also prevented us from evaluating if 

our model was sufficiently calibrated because calibration curves require a large number of 

samples [28]. Future studies will re-evaluate our results in a larger cohort, but here we focused 

on showcasing the computational pipeline for doctor-algorithm interaction.  



The external validation utilized in our study offers both a strength and a weakness. We 

were encouraged to find that -even though 6MWD was estimated from MSWT and NT-proBNP 

was measured in serum– the model still performed reasonably well. However, this inconsistency 

required us to focus on an internal validation dataset within the main manuscript, which can 

suffer from the same confounding biases as the training cohort and present an overinflated view 

of model performance.  

Conclusion: 

 In this study, we present a novel computational pipeline for clinician-algorithm 

interaction in PAH risk assessment using a case study of prospectively analyzed patients. This 

approach can be expanded to consider hundreds and even thousands of patient measurements, 

thus introducing a critical step towards implementing big data and artificial intelligence into 

clinical decision making and entering the era of personalized medicine.  
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TABLES 

Variable Description Units 

Age  Years 

6MWD Six-minute walk distance Meters 

MSWT Modified shuttle walk test distance  Meters 

e6MWD                     , estimated 6MWD Meters 

NT-proBNP Circulating N-terminal B-type natriuretic peptide pg/mL 

Creatine Serum creatine concentration pg/mL 

Glomerular Glomerular filtration rate mL/min/1.73 m
2
 

WBC CBC white blood cell count 10
3
 cells/mm

3
 

Lymph (abs) CBC differential absolute lymphocytes count 10
3
 cells/mm

3
 

Lymph (%) CBC differential percent lymphocytes count amongst all WBCs % 

Mono (abs) CBC differential absolute monocyte count 10
3
 cells/mm

3
 

Mono (%) CBC differential percent monocyte count amongst all WBCs % 

Neut (abs) CBC differential absolute neutrophil count 10
3
 cells/mm

3
 

Neut (%) CBC differential percent neutrophil count amongst all WBCs % 

Baso (abs) CBC differential absolute basophil count 10
3
 cells/mm

3
 

Baso (%) CBC differential percent basophil count amongst all WBCs % 

Eos (abs) CBC differential absolute eosinophil count 10
3
 cells/mm

3
 

Eos (%) CBC differential percent eosinophil count amongst all WBCs % 

FVC Forced vital capacity during PFT  % 

FEV1 Forced expiratory volume in 1-second during PFT  % 

TLC Total lung capacity during PFT within  % 

DLCO Diffusion capacity of lung for carbon monoxide during PFT % 

DLCO hemo DLCO adjusted for hemoglobin during PFT % 

Effusion Pericardial effusion observed at TTE mm 

RVFAC RV fractional area change at TTE % 

TAPSE Tricuspid annular plane systolic excursion  cm 

RVPsys_fTR RV systolic pressure computed from tricuspid regurgitation mmHg 

RVOT_VTI RV outflow tract velocity time integral at TTE cm/s 

sPAP Systolic pulmonary arterial pressure mmHg 

dPAP Diastolic pulmonary arterial pressure mmHg 

mPAP Mean pulmonary arterial pressure mmHg 

RAP Right atrial pressure mmHg 

PCWP Pulmonary capillary wedge pressure mmHg 

RVEDP RV end diastolic pressure mmHg 

HR Heart Rate beats/min 

CO Cardiac output mL/s 

PVR Pulmonary Vascular Resistance  Wood units 

BSA Body surface area m
2
 

SVR-index Systemic vascular resistance index (Wood units2)* m
2
 

Compliance  = (sPAP-dPAP)/(stroke volume) mmHg/mL 

HGF Hepatocyte growth factor AU 

SCF Stem cell factor AU 

IL2 Interleukin 2 AU 

IL9 Interleukin 9 AU 

Table 1. Table of variables used in this study. Notation: CBC = complete blood count; PFT = 

pulmonary function test within 3-months; TTE = transthoracic echocardiogram; RV = right 

ventricle.  

 



 H4Y-risk L4Y-risk P2-tailed 

Sample Size 74 93  

Age (years ± SD) 52.7 ± 15.5 47.0 ± 14.3 0.015 

% Female Patients 71.6 75.3  

Race  

    White 42 53 0.992 

    Asian 10 24 

    Hispanic 11 11 

    Black 5 3 

    Other 6 2 

PAH subtype  

   Connective Tissue Disease 25 27 0.997 

   Idiopathic PAH 19 27 

   Drug and Toxins 13 15 

   Congenital Heart Disease 8 17 

   Portopulmonary Hypertension  8 4 

   Hereditary PAH 1 3 

NYHA Functional Class  

   Class I 4 5 0.942 

   Class II 11 42 

   Class III 46 37 

   Class IV 13 9 

Hemodynamics  

   mPAP (mmHg) 50.8 ± 16.2 50.9 ± 16.6 0.969 

   PVR (dyn s/cm5) 11.2 ± 7.14 11.3 ± 6.59 0.925 

   Cardiac Index (m2 min) 2.27 ± 0.82 2.24 ± 0.67 0.795 

   Mean Right Atrial Pressure (mmHg) 9.70 ± 6.33 7.89 ± 4.78 0.037 

   PCWP (mmHg) 12.2 ± 5.72 10.5 ± 4.09 0.027 

Timing from …     

   Diagnosis (years ± SD)  3.1 ± 3.9 4.5 ± 5.4 0.053 

   Symptom Onset (years ± SD) 4.4 ± 4.8 6.0 ± 5.4 0.051 

Therapy  

   Treatment Naive 23 28 0.999 

   Monotherapy 21 28 

   Dual Therapy 22 26 

   Triple Therapy 8 11 

Table 2. Stanford cohort patient characteristics in high 4-year risk (H4Y-risk) and low 4-year 

risk (L4Y-risk) groups. Continuous data is compared using a t-test and categorical variables 

by 2
 test.  
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FIGURES 1 

 2 
Figure 1. (a) An outline of all biomarkers considered; (b) Volcano plot showing all circulating 3 

proteins considered with fold change (FoldChange = concentration in high-risk 4 

patients/concentration in low-risk patients) in high 4-year risk, relative to low 4-year risk. 5 

Proteins in red and blue represent those that were statistically higher or lower (Pval < 0.05), 6 

respectively, and with a |FoldChange| > 1.  7 

 8 
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 10 

11 
Figure 2. Mean comparison between low 4-year risk (4Y-risk) group and high 4Y-risk group for 12 

each of the 9 markers chosen through RFE. Each plot shows raw data, mean (red line), 95% CI 13 

in light shade, 1SD in dark shade. An inset in each plot shows the receiver operating curve for 14 

that marker along with the area under the curve (AUC). Note: Sens = sensitivity; Spec = 15 

specificity. H4Y-risk = High 4-year risk of death or need for transplant. L4Y-risk = low 4-year 16 

risk of death. 17 

  18 
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 19 
Figure 3. (a) An example decision tree randomly chosen from the 10,000 trees trained in the RF 20 

model. (b) Confusion matrix showing the accuracy of the RF model at predicting mortality in 21 

internal validation cohort. (c) Receiver operating curves (with error bars for each pointwise 22 

sensitivity calculation found by sampling 1000 bootstrap replicas) for the internal and external 23 

validation cohorts. AUC = area under receiver operating curve with 95% confidence interval in 24 

brackets. H4Y-risk = High 4-year risk of death or need for transplant. L4Y-risk = low 4-year risk 25 

of death.  26 
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29 
Figure 4. Global and Local Model Interpretability - Summary violin plot of SHAP values using 30 

the training dataset (a) and the internal validation dataset (b). 31 
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 33 

Figure 5. Decision plot of for the 34 patients withheld for (internal) validation. Each line 34 

corresponds to a given patient, and hidden lines correspond to the 2 misclassified patients. 35 

Figures (a) and (b) show decision plots with and without interactions, respectively. 36 

 37 
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 39 

Figure 6. Decision plots for two randomly selected patients (a and b) show a graphical example 40 

of how a clinician can interpret the model prediction for a specific patient. The plot also shows 41 

that features ranked for an individual prediction can be notably different than the global model 42 

structure.  43 
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ONLINE SUPPLEMENTARY MATERIAL  

O1. Expanded discussion of results 

We were surprised to find that recursive feature elimination did not reveal IL6, IL10, tumor 

necrosis factor (TNF)-α, and/or IL1β as the most important variables for predicting 4Y-risk, 

given that previous studies reported them to be highly predictive of outcomes in PAH [1-4]. This 

is especially true for IL6, which is a pro-inflammatory cytokine believed to be one of the most 

important in the pathogenesis of PAH [5, 6]. One possible explanation for this finding is that 

many interleukin cytokines in our proteomic panel turned out to be highly correlated with each 

other (see Fig. E1), which interferes with the RF algorithm’s ability to identify the strongest 

predictors [7]. In smaller datasets, like the one used in this study, this can be mitigated by RFE 

[7, 8]. Therefore, we allowed the RFE algorithm to choose the optimal 9 targets and avoid 

introducing bias into the outcome with pre-determined biomarkers. However, we wanted to 

know if replacing IL2 and IL9 with markers more prevalent in the literature would drastically 

change model performance. Fig. E2a shows a confusion matrix for the testing cohort if the model 

is trained after replacing IL2 and IL9 with IL6 and IL10, respectively. Based on the testing 

dataset, withheld from training, the model resulted in a sensitivity of 93.3% and specificity of 

87.5% (F1 score = 90.3%). Global interpretability analysis shows that IL6 and IL10 are the least 

important predictors (see Fig. E2b). Fig. E2c shows a confusion matrix for the testing cohort if 

the model is trained after replacing IL2 and IL9 with IL6 and IL1β, respectively. Based on the 

testing dataset, the final model resulted in a sensitivity of 80.0% and specificity of 80.0% (F1 

score = 80.0%). Global model structure analysis again showed these cytokines to be the least 

important predictors (see Fig. E2d). Interestingly, replacing IL1β with TNF-α produced identical 

results (results not shown).  



O2. Model validation using an external dataset 

 Thirty-eight (N = 38, see Table E1) patients evaluated at Sheffield University between 

2008 and 2014 were analyzed as an external validation cohort. All proteomic biomarkers were 

analyzed at Stanford University from shipped blood samples, but all other data was directly 

measured at Sheffield University. Several inconsistencies in data collected prevented this dataset 

from serving as a direct comparison:  

(1) 6MWD was estimated as:                         , based on a 

relationship from ref. [9]. To arrive at this equation, we downloaded the figure 

showing the correlation (r = 0.863, p < 0.0001) in 44 patients with chronic 

obstructive pulmonary disease (COPD). The original figure included a regression 

line, which was sampled at 4 random coordinate points using the WebPlotDigitizer 

[10]. We then fit our own regression line to those 4 coordinates to arrive at the 

estimate of 6MWD (e6MWD) from MSWT.  

We note that there are multiple limitations to utilizing this relationship in our 

study. Firstly, it was derived from a modest cohort of COPD patients and utilized for 

PAH patients. Second, while the correlation is statistically significant, the error 

between the two measurements is likely high. Although the raw data was not 

available to perform Bland-Altman analysis, this can be concluded from qualitatively 

inspecting the published correlation image.  

(2) NT-proBNP was measured in the plasma of the training cohort, but in the serum of 

the external validation cohort. There have been mixed findings on the comparison between NT-

proBNP measurements in plasma and serum, which can also be impacted by the assay platform 

[11, 12]. This speaks to the potential inconsistencies that can arise between different institutions 



across the globe, which highlights the need for either training all clinically implemented datasets 

on extremely large cohorts or standardizing the biochemical analysis.  

 Fig. E3 shows the 9 features compared in the Stanford and Sheffield cohorts. The trends 

between low risk and high-risk groups are consistent between the two cohorts, but there is also a 

bias in multiple markers. Therefore, the final RF algorithm (trained on 100% of the Stanford 

cohort) was trained and tested (on 100% of the Sheffield cohort) based on measurements relative 

to the low-risk groups to standardize the thresholds in the decision branches.  

 Fig. 3c shows a receiver operating curve of the H4Y-risk probability predicted for the 

Sheffield validation cohort alongside with the internal validation cohort. In spite of the 

aforementioned difference in data acquisition between the Stanford and the Sheffield cohorts, the 

RF model (trained on the Stanford cohort) is able to predict 4Y-risk with 71% sensitivity and 

81% specificity in the Sheffield external validation cohort (AUC = 0.81, 95% CI = 0.64-0.92).   

 Global interpretability analysis (see Fig. E4a) of the Sheffield cohort revealed that, even 

though 6MWD was estimated from MSWT (e6MWD), it is still the most important feature for 

predicting 4-year risk. Furthermore, NT-proBNP was also one of the top predictors. However, 

unlike in the Stanford cohort, lung function (measured by DLCO) was significantly reduced in 

the Sheffield cohort (see Fig. E3) and heavily influenced the prediction score.  

 Decision plots of all the patients in the Sheffield cohort (see Fig. E4b) revealed that the 

majority of misclassified patients tended to fall within a probability score that was closer to 50% 

(near the baseline predicted score before any features are considered) than those patients 

correctly identified as high or low 4-year risk.  

O3. Comparison against the REVEAL 2.0 risk calculator 



 Although it is not a fair comparison - because the REVEAL 2.0 risk calculator was 

developed to predict 1-year risk – we applied the REVEAL 2.0 calculator to predicting 4-year 

risk in an attempt to compare our RF model performance against a known standard. Fig. E5 

shows receiver operating curves for the probability estimates of the RF model, applied to the 

internal and external validation cohorts (Fig. E5a and E5b), alongside the REVEAL 2.0 scores 

(Fig. E5c). Pointwise confidence intervals on the sensitivity calculation were computed using 

vertical averaging from 1000 sampled bootstrap replicas.  

 Applying the REVEAL 2.0 calculator to the entire cohort considered in this study (N = 

167) revealed that a score above 9 can predict 4-year risk with 54% sensitivity and 86% 

specificity. Based on the area under the curve (AUC), the probability of a patient having a poor 

4-year outcome, given that the REVEAL 2.0 calculator predicted that patient would have a poor 

outcome, is 78% (with a 95% confidence interval of 70-84%). This result is consistent with 

previous studies [13] and shows that the REVEAL 2.0 calculator is an effective estimate beyond 

the 1-year window.  

 Although larger studies are needed, Fig. E5 shows that the performance of the RF model 

trained in this study is comparable to the REVEAL 2.0 calculator. Therefore, the computational 

pipeline proposed in this study offers a reliable prediction algorithm that is interpretable, and 

well suited for machine-physician interaction in patient-tailored therapy.  

  



TABLES  

 

 H4Y-risk L4Y-risk P2-tailed 

Sample Size 24 14  

Age (years ± SD) 60.0 ± 8.95 52.9 ± 15.4 0.080 

% Female Patients 54.1 78.5  

Race  

    White 24 12 0.057 

    Asian 0 2 

    Hispanic 0 0 

    Black 0 0 

    Other 0 0 

PAH subtype  

   Connective Tissue Disease 9 5 0.401 

   Idiopathic PAH 11 7 

   Drug and Toxins 0 0 

   Congenital Heart Disease 1 2 

   Portopulmonary Hypertension  3 0 

   Hereditary PAH 0 0 

NYHA Functional Class*  

   Class I 0 0 0.022 

   Class II 1 5 

   Class III 22 8 

   Class IV 1 0 

Hemodynamics  

   mPAP (mmHg) 45.88 ± 11.41 52.57 ± 16.84 0.153 

   PVR (dyn s/cm5) 7.20 ± 3.52 10.58 ± 5.80 0.031 

   Cardiac Index (m2 min) 3.08 ± 0.69 2.50 ± 0.70 0.018 

   Mean Right Atrial Pressure (mmHg) 11.58 ± 7.08 10.79 ± 6.09 0.729 

   PCWP (mmHg) 9.80 ± 3.71 12.0 ± 5.39 0.145 

Table E1. Sheffield cohort patient characteristics in H4Y-risk and L4Y-risk groups. 

Continuous data is compared using a t-test and categorical variables by 2
 test. *Note: NYHA 

Functional Class was not available for one patient.  

 



FIGURES  

 
Figure E1. Correlation matrix between markers in the proteomic inflammatory panel. Each 

correlation is represented by a coloured circle. Both the circle size and colour represent the 

strength of the correlation. The diagonal points, corresponding to a correlation coefficient: R
2
 = 

1, can be used as reference.    

 



 
Figure E2. Confusion matrices and global interpretability analysis generated with the internal 

validation dataset when considering: (a) the 9 features chosen by the original RFE algorithm, but 

with IL2 and IL9 replaced with IL6 and IL10, respectively, and (b) and global model structure 

corresponding to the confusion matrix in (a); (c) the 9 features chosen by the original RFE 

algorithm, but with IL2 and IL9 replaced with IL6 and IL1β, respectively, and (d) global model 

structure corresponding to the confusion matrix in (c).  

 



 
Figure E3. Mean comparison between the low 4-year risk (L4Y-risk) group and high 4-year risk 

(H4Y-risk) groups within the Stanford and Sheffield Cohorts. Note: estimated 6MWD and serum 

NT-proBNP levels are shown for the Sheffield cohort.  

 

 
Figure E4. Violin plot (a) and decision plot (b) for global interpretability analysis of the external 

validation cohort. Dashed lines in the decision plots represent patients that were incorrectly 

classified. Note: e6MWD is the estimated 6MWD from MSWT.  

 



 
Figure E5. (a and b) Receiver operating curves of the probability estimates of the RF model for 

the internal and external validation cohorts. (c) ROC for the REVEAL 2.0 risk score. Each plot 

shows the area under the curve (AUC) with the 95% confidence interval in brackets. Note: N = 

sample size used to generate the curve; Sens = sensitivity; Spec = specificity. Error bars for 

pointwise sensitivity calculations were found by sampling 1000 bootstrap replicas.  
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