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Acoustic analysis of cough sounds recorded via smartphone in COVID-19 patients reveals features of 

cough that could potentially be used to provide a fast, easy, cost-effective way to identify patients’ 

disease severity at home or in any healthcare setting. 

 

 

Abstract:  

Background: Acute respiratory syndrome due to coronavirus 2 (SARS-CoV-2) is characterised by 

heterogeneous levels of disease severity. It is not necessarily apparent whether a patient will 

develop a severe disease or not. This cross-sectional study explores whether acoustic properties of 

the cough sound of patients with coronavirus disease (COVID-19), the illness caused by SARS-CoV-2, 

correlate with their disease and pneumonia severity, with the aim of identifying patients with a 

severe disease. 

Methods: Voluntary cough sounds were recorded using a smartphone in 70 COVID-19 patients 

within the first 24 hours of their hospital arrival, between April 2020 and May 2021. Based on gas 

exchange abnormalities, patients were classified as mild, moderate, or severe.  Time- and frequency-

based variables were obtained from each cough effort and analysed using a linear mixed-effects 

modelling approach. 

Results: Records from 62 patients (37% female) were eligible for inclusion in the analysis, with mild, 

moderate, and severe groups consisting of 31, 14 and 17 patients respectively. 5 of the parameters 

examined were found to be significantly different in the cough of patients at different disease levels 

of severity, with a further 2 parameters found to be affected differently by the disease severity in 

men and women. 

Conclusions: We suggest that all these differences reflect the progressive pathophysiological 

alterations occurring in the respiratory system of COVID-19 patients, and potentially would provide 

an easy and cost-effective way to initially stratify patients, identifying those with more severe 

disease, and thereby most effectively allocate healthcare resources. 

 

Introduction 

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [1] continues to be a major health problem. Although most 

people affected by COVID-19 now have mild-to-moderate symptoms and recover within a few 



weeks, some that develop more severe disease and pneumonia often have a poorer prognosis. It is 

not known with certainty which factors predispose to severe disease, although certain genetic 

variants have been implicated [2]. Other risk factors including age, comorbidities, and determinants 

of cardiovascular risk, have also been identified [3]. There is also evidence that males are more 

susceptible to severe disease and death from COVID-19 [4, 5]. Although it has been suggested that 

the immune and inflammatory response may contribute to this gender disparity, the underlying 

pathophysiological mechanisms have not been fully elucidated.  

Much research time and money has been invested into finding ways to obtain an early COVID-19 

diagnosis. In this regard, laboratory methods, and the use of imaging techniques [6], [7], statistical 

models [8] and artificial intelligence [9] have been investigated. The currently accepted gold-

standard diagnostic test – reverse transcription polymerase chain reaction (RT-PCR) – is widely 

available and relatively accessible [10]. However, although risk stratification protocols have been 

developed [11],  potential diagnostic and prognostic tools are mostly based on relatively expensive 

and in many scenarios, difficult-to-access imaging methods (radiography, ultrasound, computed 

tomography (CT)) [12, 13]. There is a clinical need for a simpler and more widely available prognostic 

tool that would enable healthcare providers to identify patients who have developed or are at risk of 

developing a severe disease, thereby facilitating triaging of patients and early intervention even at a 

patient’s home or primary care centres [14–16]. 

The analysis and interpretation of cough sounds in the initial stages of COVID-19 disease could 

potentially provide a predictive tool that would meet these criteria. A dry cough is one of the most 

common symptoms of COVID-19, which occurs during the initial disease phase in up to 70% of 

patients [17, 18]. To date, several studies have applied machine learning paradigms to the acoustic 

properties of cough sounds to develop a screening or diagnostic tool for COVID-19 [19–22]. Many of 

these studies have leveraged the recording capabilities of the ubiquitous and easy-to-use 

smartphone to collect data, often via crowdsourcing techniques [9]. Such devices are available to a 

large proportion of the population and allow cost-effective recording of coughs using built-in 

microphones, even outside more sophisticated health care settings [23]. 

We hypothesised that the acoustic properties of the cough sound of patients with COVID-19 would 

differ with disease and pneumonia severity. Given the different effects of COVID-19 on males and 

females, we expected that the results would differ by gender. In addition, we postulated that several 

other variables: age, smoking status, pre-existing respiratory conditions, length of time with 

symptoms and fraction of inspired oxygen (FiO2) could also potentially affect this relationship. To 



test this hypothesis, here we explore the correlation between the frequency content of cough 

sounds recorded via smartphone with the disease and pneumonia severity in COVID-19 patients.  

 

Material and methods: 

Voluntary cough sounds were recorded in 70 COVID-19 patients over the age of 18 years, whose 

disease symptoms had been present for 15 days or less, within the first 24 hours (in some 

exceptional cases 48 hours) of their arrival to our teaching hospital. We used a cross-sectional study 

design, with data collection taking place on 21 different dates between April 2020 and May 2021. 

The sample size was determined by the number of participants available on these dates. The 

participants were divided into three groups according to the severity of their disease at the time of 

cough recording. The mild group consisted of patients without pneumonia, the moderate group 

were patients with pneumonia but not requiring supplemental oxygen, and severe patients showed 

moderate or severe pneumonia that necessitated oxygen therapy with invasive or non-invasive 

respiratory support [24]. The pre-existing respiratory conditions that were present in some patients 

were asthma, chronic obstructive pulmonary disease, and interstitial pulmonary fibrosis. The 

respiratory rate of the patients was between 18 and 24 breaths per minute, and there were no 

apparent limitations to their production of voluntary cough sounds. The study was conducted in 

accordance with the Declaration of Helsinki and approved by the institutional Ethics Committee 

(CEIM, ref. 10231I). Fully informed written consent was obtained from patients or their relatives 

prior to their inclusion in the study. In some cases, verbal consent was initially obtained, as 

recommended by the Ethics Committee, and was further completed with the written consent. 

Voluntary cough sounds were recorded by respiratory medicine specialists with a smartphone 

(Samsung Galaxy S21). Recordings were made in a room with as little background noise as possible. 

Patients were instructed to take a deep breath and then cough voluntarily; this often caused them to 

trigger an involuntary cough. Patients coughed 3-4 times in the direction of the smartphone, which 

was positioned 15-20 cm from their mouth. Patients who required a low-flow oxygen device were 

asked to remove the mask briefly to perform the manoeuvres. Cough sounds were acquired and 

sampled at 48kHz using the built-in hardware on the smartphone and the Easy Voice Recorder 

application (available at Google Play Store). For infection control purposes, the smartphone was 

encased in a disposable latex cover prior to each recording. We previously confirmed that the 

addition of this cover did not affect the fidelity of the cough recording by comparing the temporal, 

spectral, and time-frequency characteristics of audio signals recorded with and without the cover.  



In this study, a single expiratory effort has been labelled as a ‘cough effort’ (CE), with a ‘cough bout’ 

consisting of two or more CEs following a single initial inspiration [25]. This is illustrated in Figure 

1(a). Each CE can be further segmented into three constituent parts: a first sound (CS1), an 

intermediate part (CINT), and if present, a second sound (CS2). This segmentation was performed 

manually using both the aural and visual representation of each cough sound and is illustrated in 

Figure 1(b) [26]. The cough sound occurs during the expulsive phase of the cough, with the first 

sound happening at the moment of glottal opening. The intermediate part follows this and 

represents the steady-state flow of air with the glottis open. The second cough sound, which is not 

always present, occurs at the end of the expulsive phase as the glottis narrows. Cough recordings 

were included as valid in the database for further analysis only if a minimum of one valid cough 

bout, consisting of a minimum of two CEs, could be identified and isolated from the recording. Single 

cough efforts were excluded as the results of a single effort may be random and thus not 

representative of the cough sounds of a participant, and to ensure a balanced data set (equal 

number of coughs in first and second position in the bout). 

Individual CEs were identified in each recording by visual and aural inspection of the recorded signals 

[27]. A flowchart outlining the analysis methodology is shown in Figure 2. A total of 459 CEs were 

isolated, with a median of 6 CEs (range 5 – 10) from each recording. Information on the CE number 

within the recording as well as the CE position within a bout were also annotated. The CEs were 

filtered using a 20th order Chebyshev Type II low-pass filter with a cut-off frequency of 6 kHz to 

minimise background noise. The envelope of each identified CE was then calculated using the root 

mean square. This was used as an aid to identify and manually split each CE into its above-

mentioned constituent parts – CS1, CINT, and CS2 when this was present. For each CE, as well as its 

constituent parts, the power spectrum was estimated using Welch’s method with a Hanning window 

and a 50% overlap applied to compute the modified periodograms. Several time- and frequency-

based parameters of each whole CE signal and its constituent parts were obtained and analysed 

(Table 1). Data analysis was performed offline using custom developed scripts in Matlab [28]. 

Statistical analysis was performed in RStudio [29]. The relationship between each parameter and 

disease severity was investigated with a linear mixed-effects model with maximum likelihood 

optimisation using the lme4 library [30]. The mean value of each parameter for each CE position 

(nesting level one) was nested within each subject (nesting level two), which was in turn nested 

according to disease severity (nesting level three). Disease severity, gender and CE position were 

entered as fixed effects into the model. An interaction term (disease severity * gender) was included 

in the model to investigate whether the parameter being examined was affected differently by 

disease severity in males and females.  An intercept for individual subjects was included as a random 



effect to account for differences between subjects. Several further models were then defined, each 

with an additional fixed effect added to the main model. These were the patients’ age, smoking 

status, length of time with symptoms, presence/absence of a pre-existing respiratory condition, and 

FiO2. In each case, visual inspection of residual plots did not reveal any obvious deviations from 

homoscedasticity or normality. The variance inflation factor (VIF) was calculated for each 

independent variable to ensure that there was no collinearity between them (VIF < 5). A type II 

ANOVA with F-tests and p-values using Satterthwaite’s method for denominator degrees-of-freedom 

and F-statistic was applied to test whether the parameters had a statistically significant effect on the 

derived model. Non-parametric Kruskal-Wallis and Wilcoxon Rank Sum tests were applied as post-

hoc tests, with Benjamini and Hochberg p-value adjustment. In those cases where a significant 

interaction effect between disease severity and gender was observed, male and female data were 

also examined separately. An α value of 0.05 was used to indicate significance throughout. 

 

Results 

A total of 70 participant recordings were initially examined for eligibility. Of these, recordings from 6 

individuals were excluded due to technical problems with the recording quality (5 recordings had 

(inadvertently) been recorded at too low sampling frequency and a sixth was excluded due to the 

presence of a second person coughing simultaneously), and a further 2 recordings were also 

excluded as no clearly discernible cough sounds were present. The remaining 62 recordings were 

deemed eligible and included in all analyses. The main participant characteristics and relevant 

clinical data is presented in Table 2.  

All participants had a minimum of one CE at position one (CE1) and one at position two (CE2). Only 33 

participants (53%) had a CE at position three (CE3). Therefore, only CE1s and CE2s were included in 

the analysis, to ensure balanced representation of each participant, and to allow for the effect of CE 

position within the bout on the features extracted to be examined. 

As for the effect of gender, higher frequency content was found in female coughs than in male 

coughs. Cough sounds in general mirror the natural expected frequency content of the voice of 

males and females, with overall frequency content of female coughs higher than that of male 

coughs. 

Five of the parameters examined were found to be significantly different in the cough recordings of 

patients at different disease levels (Figure 3 & Figure 4). In the whole CE signal, these parameters 

were the frequency variability (FVAR) (760.3 vs 767.4 vs 614.9 Hz, p = 0.0031) and peak frequency (FPK) 



(473.9 vs 340.1 vs 610.3 Hz, p = 0.0025). Values given within parentheses are the median values of 

the mild, moderate, and severe groups, respectively, with this order followed in all the results here. 

In CS1, the FVAR (729.5 vs 601.9 vs 526.7 Hz, p = 0.0010) and frequency of maximum energy (FMAX) 

(2191.8 vs 1898.4 vs 1620.4 Hz, p = 0.0130) differed significantly, and in CINT, the interquartile range 

(FIQR) (674.7 vs 825.7 vs 527.6 Hz, p = 0.0260) also differed significantly. Pairwise comparisons using 

the Wilcoxon Rank Sum test with continuity correction revealed significant differences for all five 

parameters between individuals with mild and severe disease. A significant difference for FVAR and 

FPK in the whole CE signal, and the FIQR of CINT between those with moderate and severe disease was 

also found. 

A significant interaction term for disease severity and gender was found for two parameters: FVAR 

and FMAX of CINT (Figure 5). Moreover, significant differences were observed in FVAR of CINT for males 

(697.2 vs 752.0 vs 588.6 Hz, p = 0.0131) and females (1054.5 vs 768.8 vs 597.5 Hz, p < 0.0001), and in 

FMAX of CINT for females only (3567.0 vs 2691.0 vs 2190.0 Hz, p < 0.001). Pairwise comparisons using 

the Wilcoxon Rank Sum test with continuity correction revealed significant differences for FVAR of CINT 

between female patients at all disease levels, and for FMAX of CINT between female patients with mild 

and moderate, and mild and severe disease. For male patients a significant difference was observed 

for FVAR in CINT between individuals with moderate and severe disease.   

The position of the CE within the cough bout had a significant effect on the duration of the whole CE 

signal, and the duration of CS1 and CINT individually. However, there was no significant difference 

found between the frequency parameters reported here for CE positions one and two. The addition 

of a fixed effect of either patients’ age, smoking status, length of time with symptoms, 

presence/absence of a pre-existing respiratory condition, or FiO2, to the main model, was found to 

have no significant effect on the model at a significance level of α = 0.05. 

 

Discussion 

This study describes the relationship between frequency-based features of the cough sound in 

COVID-19 and the disease and pneumonia severity in the patient. These relationships were explored, 

considering patient and disease profiles (gender, age, and smoking status, as well as duration of 

COVID-19 symptoms, presence or absence of a pre-existing respiratory condition and the oxygen 

requirements) using linear mixed-effects models. The analysis of cough recordings is a relatively easy 

way to get information about some diseases in the respiratory system. A qualitative assessment of 

cough sounds may be done by a medical professional in usual care scenarios. However, this 

relatively coarse assessment is subjective and depends on the expertise and hearing acuity of the 



professional involved. Healthcare professionals usually just differentiate dry vs. productive cough; in 

fact, this is the most common comment in standard clinical records. Therefore, although a high-level 

distinction between disease types may be observed, more subtle nuances of cough sounds may be 

missed, and healthcare professionals may encounter difficulties in diagnosing from cough sounds 

[31]. Automatic algorithms can help to extract objective information from cough sounds and thus 

simplify the process and support the medical staff. 

In our quantitative analysis, five frequency-based features (FVAR and FPK of the whole CE signal, FVAR 

and FMAX of CS1 and FIQR of CINT), were found to differ significantly with disease severity, the 

classification of which is based on the presence and/or severity of pneumonia [24]. We suggest that 

these differences reflect the progressive pathophysiological alterations of the respiratory system in 

patients with COVID-19 [32]. Differences have been previously noted in chest CT scans between 

patients with mild and severe/critical disease [13]. Although similar analysis of acoustic properties of 

cough sounds has been used to diagnose respiratory illnesses [33–35], we are not aware of any 

studies that explore a possible relationship between cough sounds and varying disease severity 

levels of a respiratory illness. 

Two further frequency-based features, FVAR and FMAX of CINT, were observed to be affected differently 

in male and female patients by disease severity. CINT occurs between CS1 and CS2 and is the part of 

the cough sound that is produced via steady-state airflow with the glottis open. It is possible that the 

pathophysiology of COVID-19 differs between both genders in this part due to well-known 

differences of male and female anatomy, which would be reflected in the sound differences we 

observed. 

The data used in the present study consists of a clinically recorded and validated dataset, collected 

from a relatively large cohort of well characterised patients. The cough recordings were acquired 

with an easy-to-use smartphone application in an early period of a patients first contact with the 

health system, and by the healthcare professional caring for the patient. This helped to ensure that 

the recordings were of a consistent high quality across participants. The availability of relevant 

patient information enabled us to explore the effect of possible covariates – age, smoking status, 

length of time with symptoms, presence/absence of a pre-existing respiratory condition, and 

required FiO2 on the results obtained in our analysis. These strengths offer distinct advantages over 

other studies that use datasets that have been crowdsourced or collected using less stringent 

methodology. In addition, the use of the smartphone enables the cough recordings to be acquired in 

virtually any setting, thus overcoming limitations posed by location-dependent imaging, and other, 

techniques. 



There are also some possible limitations to our study. Spontaneous cough recording could be 

considered the optimal way to predict the pathophysiological situation in a respiratory patient. 

However, this can be difficult to acquire, as patients can have long periods without this spontaneous 

effort occurring. Therefore, we collected voluntary, induced coughs, which are easy to perform and 

have previously been validated as a good surrogate measure of the spontaneous cough from an 

acoustic perspective [36]. Our study included the analysis of CEs from positions one (CE1) and two 

(CE2) within a cough bout. The definition of a classical cough includes an inhalation prior to the 

cough sound occurring [37]. Therefore, the second cough sound in a bout is likely to be an expiration 

reflex (ER) rather than a true cough. However, although the distinction exists, as the two sounds are 

indistinguishable to the human ear, for clinical purposes no distinction was made between them. 

Our results suggest that the frequency content of the classical cough (CE1) and the ER (CE2) does not 

differ, but we noted that the duration of the ER appears shorter than that of the classical cough. 

Finally, although we found some apparent differences in the acoustic features of male and female 

cough sounds, our database was not completely balanced, consisting of 37% female patients. 

Our study highlights acoustic features of the cough sound in COVID-19 patients that differ 

significantly with disease and pneumonia severity. The results obtained suggest that it might be 

possible to identify and predict the severity and extent of COVID-19 from the cough sound of a 

particular patient. However, despite the significant differences reported, it must be noted that there 

is a substantial variability and overlap between parameters from patients with different COVID-19 

severity. Moreover, these parameters can also vary within individual patients, and this might be 

another important source of variability. For example, the mean of the intra-subject standard 

deviation for the FVAR of the whole CE signal was 106 Hz in the mild group, 87 Hz in the moderate 

group, and 75 Hz for the severe group. Interestingly, the intra-subject variation was lower in the 

severe group than in the mild group. The potential of the proposed features for classification 

purposes has not been studied yet but remains a topic for further research. Using machine learning 

techniques and perhaps adding some extra features, the potential of this approach for 

discriminating different severities could be confirmed. This could result in an early stratification and 

prediction of probable clinical outcomes to triage correctly and allocate healthcare resources 

accordingly, which would be of huge benefit for both patient and healthcare providers. Further 

studies would elucidate if this methodology may also be extendable to long-COVID to analyse if the 

evolution of the cough signal can reflect the presence or severity of respiratory sequelae (organising 

pneumonia, interstitial fibrosis, hyperreactivity).  



 
TABLE 1: TIME AND FREQUENCY PARAMETERS OBTAINED FROM THE COUGH RECORDINGS OF STUDY PARTICIPANTS. 

Parameter Description 

Dur Duration of segment in time 

FMED Median frequency 

FMID Mean spectral frequency 

FPK Frequency at point of maximum spectral energy 

FVAR Frequency variability (std. dev) 

FQ1 First quartile frequency 

FQ3 Third quartile frequency 

FIQR Interquartile range of frequency (FQ3 – FQ1) 

FMAX Frequency at 95% spectral energy 

Skew Skewness 

Kurt Kurtosis 

 

 

 

TABLE 2: ANTHROPOMETRIC AND RELEVANT CLINICAL DATA OF STUDY PARTICIPANTS. 

Disease 

Severity* 

Subjects 

(n) 

Female 

n (%) 

Age  

(years) 

Smoker† 

n (%) 

Pre-existing respiratory 

condition‡ n (%) 

Time with Symptoms 

(days) 

Mild 31 11 (35) 52.0 [44.0 – 60.5] 6 (19) 3 (10) 9.0 [7.0 – 10.5] 

Moderate 14 5 (36) 51.5 [46.0 – 60.0] 3 (21) 2 (14) 9.5 [6.3 – 11.8] 

Severe 17 7 (41) 54.0 [43.0 – 64.0] 2 (12) 2 (12) 8.0 [6.0 – 10.0] 

 
Data is presented as n (%) or median [interquartile range] unless otherwise stated. 
* Mild = no pneumonia, Moderate = pneumonia (not requiring supplemental oxygen), Severe = moderate/severe pneumonia 
(requiring supplemental oxygen)  
† The smoker category includes both current and ex-smokers. 
‡ Pre-existing respiratory conditions included here are asthma, COPD and Interstitial pulmonary fibrosis (IPF). 
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