Early View Original research article # Registry on the treatment of central and complex sleep-disordered breathing with adaptive servoventilation (READ-ASV): protocol and cohort profile Michael Arzt, Oliver Munt, Jean-Louis Pépin, Raphael Heinzer, Raphaela Kübeck, Ulrike von Hehn, Daniela Ehrsam-Tosi, Adam Benjafield, Holger Woehrle, for the READ-ASV investigators Please cite this article as: Arzt M, Munt O, Pépin J-L, *et al.* Registry on the treatment of central and complex sleep-disordered breathing with adaptive servo-ventilation (READ-ASV): protocol and cohort profile. *ERJ Open Res* 2023; in press (https://doi.org/10.1183/23120541.00618-2022). This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online. Copyright ©The authors 2023. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org Registry on the treatment of central and complex sleep-disordered breathing with adaptive servo-ventilation (READ-ASV): protocol and cohort profile Michael Arzt¹, Oliver Munt², Jean-Louis Pépin³, Raphael Heinzer⁴, Raphaela Kübeck⁵, Ulrike von Hehn⁶, Daniela Ehrsam-Tosi⁷, Adam Benjafield⁸, Holger Woehrle⁹ for the READ-ASV investigators* *A full list of investigators and study centres is provided in the online supplement. ¹Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany ²ResMed Science Centre, Martinsried, Germany ³Univ. Grenoble Alpes, Laboratoire HP2, U1300 Inserm, CHU Grenoble Alpes, Grenoble, France ⁴Centre d'Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland ⁵The Clinical Research Institute, Munich, Germany ⁶medistat GmbH, Krummwisch, Germany ⁷ResMed Science Centre, Basil, Switzerland ⁸ResMed Science Center, Sydney, NSW, Australia ⁹Sleep and Ventilation Center Blaubeuren, Ulm, Germany Corresponding author: Michael Arzt, Schlafmedizinisches Zentrum, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany. E-mail: michael.arzt@klinik.uni-regensburg.de # "Take home" message The most common indication for adaptive servo-ventilation (ASV) in the READ-ASV registry was treatment-emergent central sleep apnoea (CSA), followed by CSA associated with cardiovascular disease; daytime sleepiness and/or impaired disease-specific quality of life were common. Follow-up data from this registry will provide data on the effects of ASV on disease-specific quality of life, nocturnal respiratory parameters and clinical outcomes for patients treated in routine clinical practice. #### **Abstract** Although adaptive servo-ventilation (ASV) effectively supresses central sleep apnoea (CSA), little is known about real-world indications of ASV therapy, and its effects on quality of life (QoL). This report details the design, baseline characteristics, indications for ASV and symptom burden in patients enrolled in the Registry on the Treatment of Central and Complex Sleep-Disordered Breathing with Adaptive Servo-Ventilation (READ-ASV). This multicentre, European, non-interventional trial enrolled participants prescribed ASV in clinical practice between September 2017 and March 2021. An expert review board assigned participants to ASV indications using a guideline-based semi-automated algorithm. The primary endpoint is change in disease-specific QoL (based on the Functional Outcomes of Sleep Questionnaire [FOSQ]) from baseline to 12-month follow-up. The registry population includes 801 participants (age 67±12 years, 14% female). Indications for ASV were treatment-emergent or persistent CSA (TE-CSA; 56%), CSA in cardiovascular disease (31%), unclassified CSA (2%), coexisting obstructive sleep apnoea (OSA) and CSA (OSA-CSA; 4%), OSA (3%), CSA in stroke (2%), and opioid-induced CSA (1%). Baseline mean apnoeahypopnoea index was 48±23/h (≥30/h in 78%), FOSQ score was 16.7±3.0 (<17.9 in 54%) and Epworth Sleepiness Scale (ESS) score was 8.8±4.9 (>10 in 34%); 62% of patients were symptomatic (FOSQ score <17.9 or ESS score >10). In summary, the most common indications for ASV were TE-CSA or CSA in cardiovascular disease (excluding systolic heart failure). Patients using ASV in clinical practice had severe SDB and were often symptomatic. One-year follow-up will provide data on the effects of ASV on QoL, respiratory parameters and clinical outcomes in these patients. Trial registration: www.clinicaltrials.gov (NCT03032029) #### Introduction Sleep-disordered breathing (SDB) refers to the limitation or cessation of airflow during sleep due to obstructive apnoeas and hypopnoeas (obstructive sleep apnoea; OSA) or a lack of respiratory drive (central sleep apnoea; CSA). The estimated prevalence of SDB in the general population is 1–31% in women and 3–50% in men, with variations based on age, comorbidities and ethnicity [1-4]. In patients with heart failure, rates of SDB in those with preserved, mid-range or reduced ejection fraction have recently been reported to be 36%, 41% and 48%, respectively [5]. SDB has several important clinical consequences, including daytime sleepiness [6], progression or exacerbation of coexisting disease (e.g. hypertension, depression, diabetes, heart failure, stroke) [7-13], and impaired quality of life (QoL) [14-16]. CSA is characterised by a diminishing or cessation of respiratory drive and absence of respiratory effort [17]. Cheyne-Stokes respiration (CSR) is a type of CSA that shows a characteristic waxing and waning pattern of ventilation [17]. Continuous positive airway pressure that splints open the upper airway is not able to adapt to the shallow breathing patterns and breathing cessation characteristic of CSA/CSR. In contrast, bi-level positive airway pressure therapy using adaptive servo-ventilation (ASV) provides a variable level of pressure support according to the needs of the patient [18, 19]. ASV has been shown to effectively ameliorate CSA by reducing the number of apnoea events and the apnoea-hypopnoea index (AHI) [20-22]. Research into the use of ASV in CSA has largely focussed on patients with heart failure and reduced ejection fraction (HFrEF) [23]. Randomised clinical trial findings in this patient group resulted in a contraindication for ASV in HFrEF patients with predominant CSA and HFrEF with left ventricular ejection fraction (LVEF) ≤45% [24, 25]. However, the prevalence of SDB is also high in patients with heart disease and preserved ejection fraction (HFpEF) [5], a population that is expected to continue to grow in number [26, 27]. Although there is some data on the use of ASV in populations representative of clinical practice, these have been largely focussed on patients with heart failure [28, 29]. Therefore, there remains a relative lack of data on the real-world indications for ASV, the prevalence of symptomatic CSA in ASV users, and the effects of ASV in the variety of other patient groups encountered in sleep laboratory settings [30-32]. In addition, little is known about the influence of ASV therapy on health-related QoL in appropriately treated sleep clinic patients with SDB. Therefore, to address these issues, the Registry on the Treatment of Central and Complex Sleep-Disordered Breathing with Adaptive Servo-Ventilation (READ-ASV) was designed to prospectively evaluate the effects of ASV on health-related QoL, respiratory parameters and clinical outcomes in patients with an indication for ASV therapy in routine clinical practice. This report describes the READ-ASV design, and details the baseline characteristics, real-world indications for ASV, symptom burden, and health-related quality of life for patients who have been enrolled in the registry. #### **Material and methods** #### Registry design READ-ASV is an observational, prospective, multicentre registry that enrolled patients from sleep facilities in countries throughout Europe between September 2017 and March 2021. Prescription of ASV was done in routine clinical care based on the decision of the treating physician according to currently applicable guidelines [30]; no additional treatments or procedures were given. The registry received ethical approval from the relevant committee at each centre. Patients gave written informed consent for the use of their medical data for scientific and educational purposes. This registry is being conducted in agreement with current guidelines and legislations as stated in the Declaration of Helsinki and Good Clinical Practice standards. Guidelines and standards for conducting clinical trials apply: The European Directive 93/42/EWG, with 2007/47/EG, national applicable laws and the international standard ISO14155 for clinical trials. #### **Participants** Eligible patients are those aged ≥18 years with an indication for treatment with ASV according to applicable medical guidelines who had not previously been treated with ASV (maximum time between ASV initiation and registry enrolment was 7 days) and used an eligible ASV device (ResMed) (usually after a trial of continuous or automatically titrating positive airway pressure; CPAP/APAP). In addition, patients had to be able to fully understand information on data protection and provide written informed consent for use of their medical data. Patients with contraindications for ASV therapy based on current guidelines [30, 33] were excluded (including those with chronic, symptomatic heart failure [New York Association class II to IV] with reduced LVEF [≤45%] and moderate to severe predominant CSA). #### **Diagnostic
procedures** Diagnosis of SDB was performed in accordance with the relevant clinical standards using overnight polysomnography (PSG) or polygraphy (PG). The choice of test was based on current national guidelines [34] and routine clinical practice at each study centre. All PSG and PG recordings were scored according to contemporary guidelines [35, 36]. Based on the number of scored events, the apnoea-hypopnoea index (AHI), obstructive apnoea index (OAI), central apnoea index (CAI), and mixed apnoea index (MAI) were calculated per hour of sleep (PSG) or per hour of recording time (PG). Invalid recordings were excluded and the mean values of the documented recordings were calculated with the number of recordings indicated. Data obtained from PSG also included the average and lowest oxygen saturation (SpO₂) during sleep. PG recordings provided data on the number of oxygen desaturations (by 3% from baseline) per hour of recording time. #### **Classification of ASV indications** Patients were classified based on their underlying SDB (AHI ≥5) and the indication for ASV therapy using data from PSG or PG. The first step in categorisation of the indication for ASV therapy followed a hierarchical order and was modified from the classification by Randerath et al [30] (Table 1). Thus, when category 1 criteria were not met, eligibility based on category 2 was determined, then category 3, and so on. When cases could not be categorised unequivocally, they were evaluated by an expert review board on a case-by-case basis (Figure 1), e.g. cases with coexisting OSA-CSA were all a result of the expert review board evaluation. Patients with treatment-emergent CSA (TE-CSA) had an initial diagnosis of OSA or coexisting OSA-CSA and developed new or predominant CSA events during PAP therapy. #### Baseline assessment of quality of life and symptom burden The following data were collected at baseline: demographic/clinical data, previous ventilation therapy, and diagnostic PSG or PG findings. Patients completed the Functional Outcomes of Sleep Questionnaire (FOSQ), Epworth Sleepiness Scale (ESS), and EuroQol-5-Dimension Scale (EQ-5D) at baseline and follow-up; the Pittsburgh Sleep Quality Index (PSQI) was also completed by the first group of enrolled patients, but use of this measure was discontinued based on a protocol amendment dated 16 April 2019 after data from a pilot phase showed that a high proportion of these questionnaires were either not returned or filled out incorrectly. The FOSQ consists of 30 questions (items), divided into five sub-sections: activity level, vigilance, intimate relationship, general productivity, and social outcome. Each question is scored from 1 to 4. The total score ranges from 5 to 20, indicating poor or excellent sleep-related QoL, respectively [37]. The minimal clinically important difference (MCID) in FOSQ score is 1 point [38]. A normal FOSQ score was defined as ≥17.9 [39]. The ESS is a self-reported measure to assess whether a person would be prone to fall asleep in typical daily situations. It consists of eight questions that can be answered on a scale from 0 (never fall asleep) to 3 (high probability of falling asleep). The total score ranges from 0 to 24, with a score of 6 to 10 indicating higher normal daytime sleepiness, and scores of 11 to 12, 13 to 15 and 16 to 24 indicating mild, moderate and severe excessive daytime sleepiness (EDS), respectively. A 2-point change in total score has been proposed as the MCID for this measure in patients with OSA [40]. The PSQI contains ten questions divided into seven components, which are rated from 0 (better) to 3 (worse). The seven component scores are added together to get a global score, ranging from 0 to 21 [41]. A threshold score of ≤5 indicates a "good sleep quality" while a global score of >5 indicates a "poor sleep quality". The MCID for the PSQI is defined as 3 points [42]. The EQ-5D [43] was used to measure changes in general quality of life. Each of five dimensions (mobility, self care, usual activities, pain/discomfort and anxiety/depression) has three response levels: no problems (score = 1), some problems (score = 2), and extreme problems (score = 3) [44]. In addition, the EQ visual analogue scale (VAS) records the respondent's self-related health on a vertical VAS one end of the scale is labelled 'The worse health you can imagine' (VAS score = 0) and the other is labelled 'The best health you can imagine' (VAS score = 100) [44]. An EQ-5D summary index is derived by applying a formula that attaches values (weights) to each of the levels in each dimension. The index is calculated by deducting the appropriate weights from 1, the value for full health [44]. #### **Primary analysis outcomes** The primary outcome for the follow-up analysis is the change in FOSQ score from baseline to follow-up. Secondary outcomes are changes in ESS and EQ-5D scores, change in PSQI score (for patients who completed this questionnaire), device usage patterns, changes in nocturnal respiratory parameters during ASV, the number of hospitalisations for cardiovascular or respiratory causes, and the all-cause mortality rate per year of follow-up. ASV adherence was defined as "good" if device usage was ≥4 h/day on more 70% of days. These data will be reported separately when data collection and analysis are complete. #### Assessments and follow-up For the main analysis, follow-up will also include data on device usage and residual respiratory events (downloaded from the ASV device), and adverse events. Data on deaths (any cause) and hospitalizations (due to cardiovascular or respiratory causes) are being collected throughout the study. Patients are being followed up according to local standard practice. This recommends that clinical visits take place 1–2 times per year, meaning that all participants in the registry should have at least one follow-up visit during the 12-month follow-up period. When an in-person follow-up visit is not possible, follow-up data are collected over the phone or by mail (including severity of SDB, and changes in QoL and daytime sleepiness), and device data are downloaded remotely. Reasons for permanent discontinuation of ASV therapy are documented, and characteristics of patients who discontinue therapy are analysed. #### **Protocol amendments** The first part of the registry comprised a feasibility phase (July 2017 to December 2018), then participating centres were directly transitioned into the main phase in July 2019 (after protocol amendment). Datasets from the two phases will be combined for all analyses. Key protocol amendments included update of the exclusion criteria (chronic, symptomatic heart failure [New York Heart Association class II-VI] with LVEF ≤45% and moderate to severe predominant CSA), specification that "naïve to ASV treatment" was defined as a maximum of 7 days between start of ASV therapy and enrolment into the registry, and discontinuation of use of the PSQI for newly enrolled study patients. Study patients enrolled during the feasibility phase were followed-up according to the previous protocol version valid for the feasibility phase. # Sample size A formal sample size calculation was not performed for this registry. However, a large number of participants is needed to reflect subpopulations such as patients with CSA and stroke or opioid-induced CSA. Therefore, the goal was to enrol up to 1,000 patients. #### Data analysis plan Continuous variables are summarised using the number of observations, mean values with standard deviation, and/or median values with range. Categorical variables are summarised using the number of observations and percentages. Linear, logistic or Cox regression models will be used to examine the influence of clinical parameters, comorbidities, sleep apnoea characteristics, ASV interface, and respiratory events on changes in QoL, sleep quality and compliance during ASV therapy. Linear regression analyses will be utilised to evaluate relationships between hours of ASV usage and QoL outcomes. Statistical tests will be performed two-sided at a significance level of 5%. Due to the descriptive nature of the present analysis, no alpha adjustment for multiple testing will be applied, and the results interpreted accordingly. Statistical analyses will be performed using IBM SPSS Statistics 28 (SPSS Inc. an IBM Company, Chicago, IL). #### Dissemination The follow-up results of the READ-ASV registry will be presented at regional, national and international conferences and scientific meetings, with publication in a peer-reviewed journal. # Results #### **Population** A total of 847 patients were enrolled in the registry. Of these, twenty-two were not naïve to ASV therapy, twelve did not start ASV therapy (no device, use of other therapy or refusal of ASV) and one patient was found not to meet the inclusion criteria. Further 11 patients were excluded from analyses because it was not possible to classify them by indication for ASV. Therefore, the analysis population includes 801 patients (14% female, mean age 67 years, mean body mass index 30.9 kg/m²) (**Table 2**). All 25 patients who had heart failure with left ventricular ejection fraction <50% were receiving medical therapy, including an aldosterone antagonist (n=7), ACE inhibitor or angiotensin receptor blocker (n=17), diuretic (n=19), betablocker (n=19) and antiarrhythmic (n=1); 19 patients were taking a combination of two or more medications. #### **Indication for ASV** Baseline SDB diagnostic testing was performed using PSG in 509 patients (64%) and PG in 188 patients (23%); full PSG and PG datasets were not available for 104 patients (13%) who had undergone diagnostic testing at another institution prior to transfer to the registry centre (local routine did not call for another diagnostic study). Based on PSG/PG findings, the indication for ASV therapy was TE-CSA (n=452, 56%), CSA in cardiovascular disease (n=249, 31%), CSA in stroke (n=18, 2%),
opioid-induced CSA (n=10, 1%), unclassified CSA (n=14, 2%), coexisting OSA-CSA (n=33, 4%) or OSA (n=25, 3%); indication was not known for 11 patients (1%) (Figure 2, Table 2). By definition, rates of cardiovascular disease and cardiovascular disease risk factors were lowest in the opioid-induced CSA and unclassified CSA subgroups; the latter two groups also had the lowest mean age compared with the other groups (Table 2). The rate of opioid usage was low in all groups apart from the opioid-induced CSA group, who also had a high rate of depression (Table 2). Use of other medications reflected the comorbidity profile in each group (Table 2). Of the 180 patients who had heart failure (22%), nearly all had preserved or mid-range ejection fraction (Table 2). SDB was classified as severe (AHI ≥30/h) in 78% of patients, moderate (AHI ≥15 and <30/h) in 18% and mild (AHI ≥5 and <15/h) in 4%. Mean AHI for the total population was 48.5±22.2/h; the mean AHI was highest in the subgroups with opioid-induced CSA or coexisting OSA-CSA (62.8±37.3/h and 49.3±22.2/h, respectively) and lowest in those with unclassified CSA (31.6±12.1/h) (Table 3). The numbers in table 3 were the latest available diagnostic PG/PSG measurements without positive airway pressure therapy (median number of days between diagnostic PG/PSG and enrolment were 42 days). In the TE-CSA group the mean central apnoea index was 6±7/h (table 3) without therapy and 14±13/h on CPAP or bilevel PAP therapy without back-up frequency (before the prescription of ASV/inclusion in the registry). Overall, the severity of sleep apnoea was similar in females and males, with a higher proportion of obstructive apnoeas compared with central apnoeas in females versus males (Table S1). #### Baseline symptom burden and health-related quality of life The average FOSQ score at baseline (16.7±3.0; n=756) indicated that the patient population had impaired health-related QoL. Mean FOSQ scores were generally similar between the different patient subgroups, except for the opioid-induced CSA group, which had greater health-related QoL impairment compared with other groups (mean baseline FOSQ score 12.6±3.5). The proportion of patients with a FOSQ score <17.9 was highest in the opioid-induced CSA and unclassified CSA groups, but was above 50% in all groups except for those with coexisting OSA-CSA (**Figure 3A**). The mean ESS score at baseline (8.8±5; n=720) was not indicative of EDS overall. However, the mean ESS score in individuals with opioid-induced CSA or unclassified CSA (11.9±4.1 and 11.6±6.3, respectively) indicated mild EDS in these subgroups. Again, it was the opioid- induced and unclassified CSA groups that had the highest proportion of patients with an ESS score >10, but at least a third of patients in the other indication groups had an ESS score indicative of EDS (Figure 3B). The proportion of symptomatic patients (FOSQ score <17.9 or ESS score >10) was 62% overall, ranging from 54% in the coexisting OSA-CSA group to 80% and 90% in the CSA in stroke and opioid-induced CSA groups, respectively (**Figure 3C**). More than two-thirds of patients in all indication groups, apart from OSA, had a PSQI score >5 at baseline, indicating poor sleep quality (**Figure S1**). Overall, 414/756 patients with evaluation of the FOSQ score and 397/720 with evaluation of the ESS score had received another form of positive airway pressure (PAP) therapy previously. A group-wise comparison of mean FOSQ and ESS scores did not find any significant differences between those with versus without previous usage of continuous or bilevel PAP therapy (FOSQ 16.6±3.1 vs. 16.7±3.0, respectively; p=0.875 and ESS score 8.9±5.2 vs. 8.7±4.8, respectively; p=0.628). Baseline findings for general QoL were consistent with data on sleepiness and disease-specific QoL, with opioid users having severely impaired QoL and patients with all other ASV indications also have impaired general QoL (Figure S2). Despite having similar sleep apnoea severity, females reported a higher symptom burden, longer sleep onset latency and more impaired health-related quality of life than males, and were more likely to be symptomatic (FOSQ score <17.9 or ESS score >10) (**Table S2**). #### Discussion Key findings from the baseline data of READ-ASV include the identification of TE-CSA and CSA in cardiovascular disease as the most common indications for ASV therapy in clinical practice, the presence of severe sleep apnoea in most participants, a high symptom burden and moderately impaired health-related QoL. Although the findings of the SERVE-HF study [25] resulted in a clear contraindication for ASV in patients with heart failure and LVEF ≤45%, this group only comprises a small subset of the total group that could be treated with ASV [45, 46], and there are also non-heart failure patients with a variety of forms of SDB who could benefit from ASV therapy [47]. READ-ASV is the largest prospective registry or study to date investigating the usage and effects of ASV in a real-world cohort with SDB. One real-world registry with 214 enrolled patients has reported data on the clinical characteristics of patients receiving ASV in clinical practice [48]. There is only one other registry (FACE) that has recruited patients receiving ASV therapy in the post-SERVE-HF era, but the focus was still largely on use of ASV in patients with heart failure [29]. The FACE study was initiated prior to 2015, but inclusion/exclusion criteria were modified to exclude patients with predominant CSA and a LVEF of ≤45% after publication of the SERVE-HF study findings [29]. Three-month follow-up data from that study, which included 503 patients, were used to define six clinically relevant subgroups (phenotypes) for patients with heart failure and SDB [28]. Acceptance of ASV therapy was highest in the subgroups characterised by a high proportion of older, male patients with higher body mass index, hypoxia and comorbidities such as hypertension and stroke [28]. These patients also comprised some of the READ-ASV registry population who were prescribed ASV. However, indications for ASV were broader than just those relating to cardiovascular disease. TE-CSA was the most common indication for ASV in the READ-ASV registry, documented in approximately half of all patients. This is consistent with data from a German study, which reported that TE-CSA was the indication for ASV therapy in 67% of the 264 patients studied [49]. In contrast, 20% of patients enrolled in a prospective study of ASV in clinical practice had TE-CSA, whereas most ASV users (60%) had pre-existing CSA [48]. The official definition of TE-CSA states that cardiovascular disease should be ruled out as a cause for TE-CSA [30]. However, the definition used in this registry simply required patients to have an initial diagnosis of OSA and then to have persistent or newly developed CSA during a trial of CPAP, irrespective of the presence of comorbidities (including cardiovascular disease). This difference compared with current guidelines is a limitation of the registry. However, most patients with TE-CSA also have cardiovascular comorbidities, as also documented in other registries [48-50]. Furthermore, the prevalence of TE-CSA or persisting CSA in patients with normal levels of B-type natriuretic peptide (BNP) has been shown to be low [51], while TE-CSA is common in patients with OSA and heart failure initially treated with CPAP [50]. Another limitation is the lack of systematic detailed information regarding the time between the initiation of CPAP and a subsequent prescription for ASV as well as details of the CPAP titration procedure such as pressure overshooting or leakage. Taken together, these data highlight the close association between TE-CSA and cardiovascular disease, and suggest that the definition used in our registry is applicable to real-world practice. Findings have to be interpreted in the light of the following limitations. Although PSG is considered to be the gold standard to diagnose the severity and type of SDB a proportion of the patients in the European READ-ASV registry was diagnosed using PG according to national guidelines and routine clinical practice. This may lead to underestimation of the AHI in those patients diagnosed with PG. Since specific criteria to classify central and obstructive hypopneas such as arousal timing and classification of REM and non REM sleep from PSG [52] was not available in all patients, the discrimination between OSA and CSA was based on the discrimination between central and obstructive apnoeas as described and validated previously [53]. It cannot be ruled out that some patients with a small proportion of apnoeas may have been misclassified to CSA rather than OSA in clinical routine. A strength of READ-ASV is the recruitment of 112 women with an indication for ASV, who, compared to men, have fewer cardiovascular comorbidities and are less often diagnosed with CSA [5]. Females reported a higher symptom burden and more impaired health-related quality of life than males, despite having similar sleep apnoea severity (tables S1 and S2). Although our data and others [49] indicate that ASV is often used for the management of TE-CSA in clinical practice, there has not yet been a single randomised controlled trial of ASV in this patient population. This is an important area for future research, but a consistent definition of TE-CSA needs to be determined to allow robust studies designed to facilitate better understanding of the effects of ASV in TE-CSA. In addition to showing that TE-CSA is predominantly a 'cardiovascular cohort', CSA in cardiovascular disease was the second-most common indication for ASV therapy in the real-world READ-ASV registry, in line with previous findings [49]. This highlights the close association between the presence of CSA and cardiovascular disease, and is the area where most previous research on ASV has been focused, including both clinical
trials and registry data [23, 28, 29, 54]. Some patients with cardiovascular disease (specifically those with systolic heart failure and LVEF ≤45%) should not be treated with ASV, but this is a small subset of the total number of patients who might benefit from therapy. One point to note when interpreting data from READ-ASV is that hypertension was included in the hierarchical definition of cardiovascular disease in this study. While not strictly a cardiovascular disease itself, hypertension is one of the most important cardiovascular disease risk factors [55, 56]. Furthermore, hypertension was a common comorbidity in patients who accepted ASV therapy in the FACE study, highlighting the relevance of coexisting hypertension in patients with SDB. In this sleep clinic population with indications for ASV therapy, the proportion of symptomatic patients was relatively high, at 62%. Looking at an ESS score >10 only, the proportion of patients in the current registry meeting the criteria for EDS was 34%, much higher than in the SchlaHF-XT registry where 14% of patients had an ESS score of 11 or more [5]. Compared with our sleepy and symptomatic patient group, the FACE registry included a non-sleepy population with a median ESS score of 7 [29], while the mean ESS score at baseline in the SERVE-HF and CAT-HF trials was also indicative of a lack of daytime sleepiness [25, 57]. This is not unexpected because patient selection criteria for the READ-ASV registry differ from those in clinical trials where it is not ethical to randomise symptomatic patients to a control/untreated group. In addition, the majority of ASV studies to date have been conducted in patients with CSA and HFrEF. However, this patient group is characterised by a lack of sleepiness [58, 59], meaning they are less likely to have impaired health-related QoL and making it very difficult to determine the effects of ASV on important patient-reported outcomes such as symptoms and QoL. Some indication for an improvement in QoL has been reported for patients with heart failure and CSA based on a meta-analysis of available clinical trial data, but evidence quality is low and study heterogeneity is high [23]. The high proportion of patients categorised as symptomatic at baseline means that the READ-ASV registry is well placed to determine the effects of ASV on the primary analysis endpoint of health-related QoL. This is a clinically relevant endpoint for symptomatic patients and allows holistic evaluation of the therapeutic effects of ASV. Thus, although randomised clinical trials theoretically provide the highest levels of clinical evidence, the external generalisability of data from randomised controlled trials of ASV is limited by the necessity for strict patient inclusion and exclusion criteria, and the enrolment of patients without relevant daytime sleepiness or impaired QoL. Therefore, the goal of the READ-ASV registry is to fill these knowledge gaps based on real-world data from patients treated with ASV therapy. Data from this and other registries in the field, such as FACIL-VAA (NCT02835638) and FACE [28, 29], will provide important data to help inform healthcare decision making [60]. Baseline data show that this clinically relevant population includes mostly patients with TE-CSA or CSA in cardiovascular disease, who have severe sleep apnoea and moderate functional impairment. #### Acknowledgements Medical writing assistance was provided by Nicola Ryan, independent medical writer, funded by ResMed. The authors would like to thank CRI – The Clinical Research Institute, Munich, Germany for their support in the organization and conduct of this study. #### **Funding** This work was supported by ResMed. #### **Authors' contributions** Conception and design: all authors. Interpretation: MA, JLP, RH, HW. Drafting the first version of the manuscript: MA. Review, editing and approval of the manuscript: all authors. #### **Conflict of interest** MA has received grant support from ResMed, the ResMed Foundation, Philips Respironics and the Else-Kroehner Fresenisus Foundation. MA has received lecture and consulting fees Pharmaceuticals outside the submitted work. JLP is supported by the French National Research Agency in the framework of the Investissements d'Avenir program [Grant ANR-15-IDEX-02] and the e-Health and Integrated Care and Trajectories Medicine and MIAI Artificial Intelligence (ANR-19- P3IA-0003) chairs of excellence from the Grenoble Alpes University Foundation. He reports lecture fees or conference traveling grants from ResMed, Philips, Jazz Pharmaceuticals, Agiradom, and Bioprojet. HW reports lecture/consulting fees from Astra Zeneca, Allergopharma, Bioprojet, Boehringer Ingelheim, Chiesi, GSK, Novartis, Inspire, Jazz and ResMed, and research support from ResMed and Novartis. RK is an employee of The Clinical Research Institute that was funded by ResMed to support this study. OM, AB and DE-T are all employees of ResMed. RH has no conflicts of interest to disclose. # **Figure legends** Figure 1. Schematic classification of indications for adaptive servo-ventilation therapy as defined during expert review board classification. Green boxes represent diagnostic findings (e.g. diagnostic polysomnography [PSG] or polygraphy [PG] or, if these were not available, based on the aetiology provided by the investigator), and orange boxes represent findings during standard positive airway pressure therapy but also take into account the reason for switch to ASV therapy provided by the investigator. *Depending on diagnostic information. AF, atrial fibrillation; CAD, coronary artery disease; CAI, central apnoea index; CSA, central sleep apnoea; CSA in CVD, central sleep apnoea in cardiovascular disease; CSR, Cheyne Stokes respiration; HF, heart failure; HI, hypopnoea index; OAI, obstructive apnoea index; OSA, obstructive sleep apnoea; PAP, positive airway pressure; TE-CSA, treatment-emergent or persistent central sleep apnoea. **Figure 2.** Indication for adaptive servo-ventilation therapy. CSA, central sleep apnoea; CSA in CVD, central sleep apnoea in cardiovascular disease; OSA, obstructive sleep apnoea; TE-CSA, treatment-emergent or persistent central sleep apnoea. Figure 3. Proportion of patients in the total population and by indication subgroup who were symptomatic based on a Functional Outcomes of Sleep Questionnaire (FOSQ) score <17.9 (n=410 of 756) (A), an Epworth Sleepiness Scale (ESS) score >10 (n=246 of 720) (B), and an FOSQ score <17.9 or an ESS score >10 (n=456 of 736) (C). CSA, central sleep apnoea; CSA-CVD, central sleep apnoea in cardiovascular disease; OSA, obstructive sleep apnoea; TE-CSA, treatment-emergent or persistent central sleep apnoea. The numbers and circles at the bottom of the columns indicate the size of the respective subgroup. # **Tables** **Table 1.** Hierarchical categorisation of patient subgroups based on indication for adaptive servo-ventilation therapy (modified from Randerath et al, 2017) [30] | Treatment-emergent or persistent CSA | Initial diagnosis of OSA, developed central events or central | |--------------------------------------|--| | | events persisted during a trial of PAP therapy; or the | | | investigator indicated "treatment-emergent or persistent | | | CSA" | | CSA in cardiovascular disease | Initial diagnosis of CSA with coexisting heart failure, atrial | | | fibrillation, coronary artery disease, or hypertension (if | | | history of stroke does not prevail) | | CSA in stroke | Initial diagnosis of CSA with a history of stroke | | Opioid-induced CSA | Initial diagnosis of CSA and use of opioids | | Unclassified (idiopathic) CSA | CSA in the absence of other comorbidities | | OSA | Initial diagnosis of OSA, and OSA persisted during PAP | | | therapy | | Coexisting OSA and CSA (OSA-CSA) | Initial diagnosis of coexisting CSA-OSA or mixed apnoeas that | | | persisted during a trial of PAP therapy, or a diagnosis of OSA | | | where obstructive/central events or mixed apnoeas still | | | occurred during PAP therapy. Due to the complexity of this | | | diagnosis, cases in this category were all a result of the expert | | | review board evaluation. | | | CSA in cardiovascular disease CSA in stroke Opioid-induced CSA Unclassified (idiopathic) CSA OSA | ASV, adaptive servo-ventilation; CSA, central sleep apnoea; OSA, obstructive sleep apnoea; PAP, positive airway pressure. **Table 2.** Demographic data, comorbidities and medication for the total study population, and in patient subgroups based on indication for adaptive servoventilation therapy. | | Total (n=901) | TE-CSA | CSA in CVD | CSA in stroke | Opioid-induced | Unclassified | OSA-CSA | OSA (n=35) | |------------------------------------|---------------|------------|------------|----------------|----------------|--------------|-----------|------------| | | Total (n=801) | (n=452) | (n=249) | (n=249) (n=18) | | CSA (n=14) | (n=33) | OSA (n=25) | | Age, years | 67.0±11.8 | 67.3±11.8 | 67.9±10.2 | 66.2±11.8 | 49.6±8.4 | 48.2±15.6 | 67.2±13.3 | 68.2±12.6 | | Female, n (%) | 112 (14.0) | 66 (14.6) | 26 (10.4) | 1 (5.6) | 3 (30.0) | 2 (14.3) | 6 (18.2) | 8 (32.0) | | Body mass index, kg/m ² | 30.9±5.4 | 31.6±5.6 | 30.2±4.8 | 28.2±3.6 | 29.2±6.2 | 27.9±4.0 | 31.4±5.6 | 31.5±6.1 | | Cardiovascular risk factors a | and | | | | | | | | | comorbidities, n (%) | | | | | | | | | | Hypertension | 629 (78.5) | 342 (75.7) | 228 (91.6) | 11 (61.1) | 1 (10.0) | 0 (0.0) | 26 (78.8) | 21 (84.0) | | Diabetes | 203 (25.3) | 115 (25.4) | 65 (26.1) | 5 (27.8) | 0 (0.0) | 0 (0.0) | 12 (36.4) | 6 (24.0) | | Atrial fibrillation | 257 (32.1) | 122 (27.0) | 112 (45.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 16 (48.5) | 7 (28.0) | | Coronary artery disease | 233 (29.1) | 116 (25.7) | 102 (41.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 9 (27.3) | 6 (24.0) | | Heart failure | 185 (23.1) | 105 (23.2) | 66 (26.9) | 0
(0.0) | 0 (0.0) | 0 (0.0) | 10 (30.3) | 4 (16.0) | | HFpEF | 160 | 95 | 51 | 0 | 0 | 0 | 10 | 4 | | HFmrEF | 24 | 10 | 14 | 0 | 0 | 0 | 0 | 0 | | HFrEF | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | Stroke | 92 (11.5) | 47 (10.4) | 22 (8.8) | 18 (100.0) | 0 (0.0) | 0 (0.0) | 1 (3.0) | 4 (16.0) | | Depression, n (%) | 92 (11.5) | 53 (11.7) | 22 (8.8) | 3 (16.7) | 3 (30.0) | 2 (14.3) | 5 (15.2) | 4 (16.0) | | Medication, n (%) | | | | | | | | | | Opioids | 86 (10.7) | 38 (8.4) | 26 (10.4) | 3 (16.7) | 10 (100.0) | 0 (0.0) | 3 (9.1) | 6 (24.0) | | Aldosterone | (7 (0 4) | 44 (0.4) | 10 /7 () | 2 (44.4) | 0 (0 0) | 0 (0 0) | 2 (0.4) | 2 (0.0) | | antagonists | 67 (8.4) | 41 (9.1) | 19 (7.6) | 2 (11.1) | 0 (0.0) | 0 (0.0) | 3 (9.1) | 2 (8.0) | | ACE inhibitors | 391 (48.8) | 214 (47.3) | 146 (58.6) | 7 (38.9) | 1 (10.0) | 0 (0.0) | 14 (42.4) | 9 (36.0) | |----------------|------------|------------|------------|----------|----------|---------|-----------|-----------| | Diuretics | 333 (41.6) | 175 (38.7) | 120 (48.2) | 7 (38.9) | 3 (30.0) | 0 (0.0) | 14 (42.4) | 14 (56.0) | | Beta-blocker | 422 (52.7) | 226 (50.0) | 154 (61.8) | 5 (27.8) | 3 (30.0) | 0 (0.0) | 19 (57.6) | 15 (60.0) | Values are mean ± standard deviation, or number of patients (%). ACE, angiotensin-converting enzyme; CSA, central sleep apnoea; CVD, cardiovascular disease; TE-CSA, treatment-emergent central sleep apnoea. ^{*}NE, not evaluated (13 cases could not be evaluated due to a lack of data. Although these patients were included in the intention-to-treat analyses, they could not be categorized by indication). **Table 3.** Polygraphy/polysomnography findings (last available diagnostic PG/PSG without any positive airway pressure therapy) for the total study population, and in patient subgroups based on indication for adaptive servo-ventilation therapy. In the TE-CSA group on CPAP or bilevel PAP therapy without back-up frequency (before the prescription of ASV/inclusion in the registry) the mean central apnoea index was per definition numerically higher compared to the diagnostic PG/PSG (14±13/h versus 6±7/h). | Davamatav | CAI, /h 13±14 (576) OAI, /h 15±16 (591) | TE-CSA | CSA in CVD | CSA in stroke | Opioid-induced | Unclassified | OSA-CSA | OSA | |-----------|---|-------------|-------------|---------------|----------------|--------------|------------|------------| | Parameter | (n=801) | (n=452) | (n=249) | (n=18) | CSA (n=10) | CSA (n=14) | (n=33) | (n=25) | | AHI, /h | 48±22 (694) | 49±23 (354) | 48±20 (246) | 48±27 (18) | 70±35 (9) | 32±12 (14) | 49±22 (32) | 45±21 (21) | | CAI, /h | 13±14 (576) | 6±7 (264) | 20±14 (240) | 25±26 (17) | 33±25 (9) | 11±8 (14) | 7±7 (25) | 3±3 (7) | | OAI, /h | 15±16 (591) | 20±17 (337) | 5±4 (180) | 7±6 (10) | 8±9 (7) | 3±3 (7) | 18±15 (29) | 32±19 (21) | | MAI, /h | 9±10 (434) | 8±10 (229) | 9±12 (155) | 7±5 (7) | 10±17 (7) | 5±2 (3) | 11±9 (24) | 2±1 (9) | | HI, /h | 19±14 (663) | 20±14 (339) | 19±15 (234) | 19±13 (17) | 24±21 (9) | 18±11 (14) | 20±16 (29) | 11±10 (21) | Values are mean ± standard deviation (number of patients with data). AHI, apnoea-hypopnoea index; CAI, central apnoea index; HI, hypopnoea index; MAI, mixed apnoea index; OAI, obstructive apnoea index. ## References - 1. Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, Kales A. Prevalence of sleep-disordered breathing in women: effects of gender. *American journal of respiratory and critical care medicine* 2001: 163(3 Pt 1): 608-613. - 2. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. *Lancet Respir Med* 2015: 3(4): 310-318. - 3. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. *Am J Respir Crit Care Med* 2002: 165(9): 1217-1239. - 4. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pépin JL, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. *Lancet Respir Med* 2019: 7(8): 687-698. - 5. Arzt M, Oldenburg O, Graml A, Schnepf J, Erdmann E, Teschler H, Schoebel C, Woehrle H, for the SchlaHF Investigators. Prevalence and predictors of sleep-disordered breathing in chronic heart failure: the SchlaHF-XT registry. *ESC Heart Fail* 2022: online ahead of print (doi: 10.1002/ehf1002.14027). - 6. Lal C, Weaver TE, Bae CJ, Strohl KP. Excessive Daytime Sleepiness in Obstructive Sleep Apnea. Mechanisms and Clinical Management. *Ann Am Thorac Soc* 2021: 18(5): 757-768. - 7. Baillieul S, Dekkers M, Brill AK, Schmidt MH, Detante O, Pépin JL, Tamisier R, Bassetti CLA. Sleep apnoea and ischaemic stroke: current knowledge and future directions. *Lancet Neurol* 2022: 21(1): 78-88. - 8. Bangash A, Wajid F, Poolacherla R, Mim FK, Rutkofsky IH. Obstructive Sleep Apnea and Hypertension: A Review of the Relationship and Pathogenic Association. *Cureus* 2020: 12(5): e8241. - 9. Douglas N, Young A, Roebuck T, Ho S, Miller BR, Kee K, Dabscheck EJ, Naughton MT. Prevalence of depression in patients referred with snoring and obstructive sleep apnoea. *Intern Med J* 2013: 43(6): 630-634. - 10. Peppard PE, Szklo-Coxe M, Hla KM, Young T. Longitudinal association of sleep-related breathing disorder and depression. *Archives of internal medicine* 2006: 166(16): 1709-1715. - 11. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. *N Engl J Med* 2000: 342(19): 1378-1384. - 12. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. *Am J Epidemiol* 2004: 160(6): 521-530. - 13. Reutrakul S, Mokhlesi B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. *Chest* 2017: 152(5): 1070-1086. - 14. Baldwin CM, Griffith KA, Nieto FJ, O'Connor GT, Walsleben JA, Redline S. The association of sleep-disordered breathing and sleep symptoms with quality of life in the Sleep Heart Health Study. *Sleep* 2001: 24(1): 96-105. - 15. Pauletto P, Réus JC, Bolan M, Massignan C, Flores-Mir C, Maia I, Gozal D, Hallal ALC, Porporatti AL, Canto GL. Association between obstructive sleep apnea and health-related quality of life in untreated adults: a systematic review. *Sleep Breath* 2021: 25(4): 1773-1789. - 16. Wanberg LJ, Rottapel RE, Reid ML, Bertisch SM, Bron M, Kapur VK, Bujanover S, Harrington Z, Bakker JP, Javaheri S, Hanson M, Figetakis K, Page K, Hanes S, Villa KF, Redline - S. Prevalence of sleepiness and associations with quality of life in patients with sleep apnea in an online cohort. *J Clin Sleep Med* 2021: 17(12): 2363-2372. - 17. Eckert DJ, Jordan AS, Merchia P, Malhotra A. Central sleep apnea: Pathophysiology and treatment. *Chest* 2007: 131(2): 595-607. - 18. Allam JS, Olson EJ, Gay PC, Morgenthaler TI. Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. *Chest* 2007: 132(6): 1839-1846. - 19. Teschler H, Dohring J, Wang YM, Berthon-Jones M. Adaptive pressure support servoventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. *American journal of respiratory and critical care medicine* 2001: 164(4): 614-619. - 20. Sharma BK, Bakker JP, McSharry DG, Desai AS, Javaheri S, Malhotra A. Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: a systematic review and meta-analysis. *Chest* 2012: 142(5): 1211-1221. - 21. Hernandez AV, Jeon A, Denegri-Galvan J, Ortega-Loayza F, Felix-Moscoso M, Pasupuleti V, Kaw R. Use of adaptive servo ventilation therapy as treatment of sleep-disordered breathing and heart failure: a systematic review and meta-analysis. *Sleep and Breathing* 2020: 24(1): 49-63. - 22. Arzt M, Schroll S, Series F, Lewis K, Benjamin A, Escourrou P, Luigart R, Kehl V, Pfeifer M. Auto-servoventilation in heart failure with sleep apnoea: a randomised controlled trial. *European Respiratory Journal* 2013: 42(5): 1244-1254. - 23. Yamamoto S, Yamaga T, Nishie K, Nagata C, Mori R. Positive airway pressure therapy for the treatment of central sleep apnoea associated with heart failure. *Cochrane Database*Syst Rev 2019: 12(12): Cd012803. - 24. Aurora RN, Bista SR, Casey KR, Chowdhuri S, Kristo DA, Mallea JM, Ramar K, Rowley JA, Zak RS, Heald JL. Updated Adaptive Servo-Ventilation Recommendations for the 2012 AASM Guideline: "The Treatment of Central Sleep Apnea Syndromes in Adults: Practice Parameters with an Evidence-Based Literature Review and Meta-Analyses". *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2016: 12(5): 757-761. - 25. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E, Levy P, Simonds AK, Somers VK, Zannad F, Teschler H. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. *N Engl J Med* 2015: 373(12): 1095-1105. - 26. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. *Circulation* 2015: 131(4): e29-322. - 27. Okura Y, Ramadan MM, Ohno Y, Mitsuma W, Tanaka K, Ito M, Suzuki K, Tanabe N, Kodama M, Aizawa Y. Impending epidemic: future projection of heart failure in Japan to the year 2055. *Circ J* 2008: 72(3): 489-491. - 28.
Tamisier R, Damy T, Bailly S, Davy JM, Verbraecken J, Lavergne F, Palot A, Goutorbe F, d'Ortho MP, Pépin JL. Adaptive servo ventilation for sleep apnoea in heart failure: the FACE study 3-month data. *Thorax* 2022: 77(2): 178-185. - 29. Tamisier R, Damy T, Davy JM, Verbraecken JA, Bailly S, Lavergne F, Palot A, Goutorbe F, Pépin JL, d'Ortho MP. Cohort profile: FACE, prospective follow-up of chronic heart failure patients with sleep-disordered breathing indicated for adaptive servo ventilation. *BMJ Open* 2020: 10(7): e038403. - 30. Randerath W, Verbraecken J, Andreas S, Arzt M, Bloch KE, Brack T, Buyse B, De Backer W, Eckert DJ, Grote L, Hagmeyer L, Hedner J, Jennum P, La Rovere MT, Miltz C, McNicholas WT, Montserrat J, Naughton M, Pepin JL, Pevernagie D, Sanner B, Testelmans D, Tonia T, Vrijsen B, Wijkstra P, Levy P. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. *The European respiratory journal* 2017: 49(1). - 31. Mayer G, Arzt M, Braumann B, Ficker JH, Fietze I, Frohnhofen H, Galetke W, Maurer JT, Orth M, Penzel T, Pistner H, Randerath W, Rösslein M, Sitter H, Stuck BA. German S3 Guideline Nonrestorative Sleep/Sleep Disorders, chapter "Sleep-Related Breathing Disorders in Adults," short version. *Somnologie* 2017: 21(4): 290-301. - 32. Baillieul S, Revol B, Jullian-Desayes I, Joyeux-Faure M, Tamisier R, Pepin JL. Diagnosis and management of central sleep apnea syndrome. *Expert review of respiratory medicine* 2019: 13(6): 545-557. - 33. Aurora RN, Chowdhuri S, Ramar K, Bista SR, Casey KR, Lamm CI, Kristo DA, Mallea JM, Rowley JA, Zak RS, Tracy SL. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. *Sleep* 2012: 35(1): 17-40. - 34. Mayer GA, M.; Braumann, B.; Ficker, J.H.; Fietze, I.; Galetke, W.; Maurer, J.T.; Orth, M.; Penzel, T.; Pistner, H.P.; Randerath, W.; Rösslein, M.; Sitter, H.; Stuck, B.A. S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen Kapitel Schlafbezogene Atmungsstörungen *Somnologie* 2017: 20: S97-S180. - 35. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, Troester MT, Vaughn BV. AASM Scoring Manual Updates for 2017 (Version 2.4). *J Clin Sleep Med* 2017: 13(5): 665-666. - 36. Berry RB, Gamaldo CE, Harding SM, Brooks R, Lloyd RM, Vaughn BV, Marcus CL. AASM Scoring Manual Version 2.2 Updates: New Chapters for Scoring Infant Sleep Staging and Home Sleep Apnea Testing. *J Clin Sleep Med* 2015: 11(11): 1253-1254. - 37. Weaver TE, Laizner AM, Evans LK, Maislin G, Chugh DK, Lyon K, Smith PL, Schwartz AR, Redline S, Pack AI, Dinges DF. An instrument to measure functional status outcomes for disorders of excessive sleepiness. *Sleep* 1997: 20(10): 835-843. - 38. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2017: 13(3): 479-504. - 39. Weaver TE, Maislin G, Dinges DF, Bloxham T, George CF, Greenberg H, Kader G, Mahowald M, Younger J, Pack AI. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. *Sleep* 2007: 30(6): 711-719. - 40. Patel S, Kon SSC, Nolan CM, Barker RE, Simonds AK, Morrell MJ, Man WD. The Epworth Sleepiness Scale: Minimum Clinically Important Difference in Obstructive Sleep Apnea. *Am J Respir Crit Care Med* 2018: 197(7): 961-963. - 41. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. *Psychiatry Res* 1989: 28(2): 193-213. - 42. Buysse DJ, Germain A, Moul DE, Franzen PL, Brar LK, Fletcher ME, Begley A, Houck PR, Mazumdar S, Reynolds CF, 3rd, Monk TH. Efficacy of brief behavioral treatment for chronic insomnia in older adults. *Arch Intern Med* 2011: 171(10): 887-895. - 43. EuroQol. EQ-5D. Available from: https://euroqol.org/eq-5d-instruments/. Accessed 6 Oct 2022. - 44. EuroQol. EQ-5D-3L User Guide. Available from: https://euroqol.org/publications/user-guides/. Accessed 6 Oct 2022. - 45. Randerath W, Schumann K, Treml M, Herkenrath S, Castrogiovanni A, Javaheri S, Khayat R. Adaptive servoventilation in clinical practice: beyond SERVE-HF? *ERJ Open Research* 2017: 3(4): 00078-02017. - 46. Cantero C, Adler D, Pasquina P, Uldry C, Egger B, Prella M, Younossian AB, Poncet A, Soccal-Gasche P, Pepin J-L, Janssens J-P. Adaptive Servo-Ventilation: A Comprehensive Descriptive Study in the Geneva Lake Area. *Frontiers in Medicine* 2020: 7. - 47. d'Ortho M-P, Woehrle H, Arzt M. Current and future use of adaptive servoventilation. *Eur Respir Pulm Dis* 2016: 2: 18-22. - 48. Jaffuel D, Philippe C, Rabec C, Mallet J-P, Georges M, Redolfi S, Palot A, Suehs CM, Nogue E, Molinari N, Bourdin A. What is the remaining status of adaptive servo-ventilation? The results of a real-life multicenter study (OTRLASV-study). *Respiratory Research* 2019: 20(1): 235. - 49. Malfertheiner MV, Lerzer C, Kolb L, Heider K, Zeman F, Gfullner F, Maier LS, Pfeifer M, Arzt M. Whom are we treating with adaptive servo-ventilation? A clinical post hoc analysis. *Clinical research in cardiology : official journal of the German Cardiac Society* 2017: 106(9): 702-710. - 50. Bitter T, Westerheide N, Hossain MS, Lehmann R, Prinz C, Kleemeyer A, Horstkotte D, Oldenburg O. Complex sleep apnoea in congestive heart failure. *Thorax* 2011: 66(5): 402-407. - 51. Westhoff M, Arzt M, Litterst P. Prevalence and treatment of central sleep apnoea emerging after initiation of continuous positive airway pressure in patients with obstructive sleep apnoea without evidence of heart failure. *Sleep & breathing = Schlaf & Atmung* 2012: 16(1): 71-78. - 52. Randerath WJ, Treml M, Priegnitz C, Stieglitz S, Hagmeyer L, Morgenstern C. Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas. *Sleep* 2013: 36(3): 363-368. - 53. Tafelmeier M, Knapp M, Lebek S, Floerchinger B, Camboni D, Creutzenberg M, Wittmann S, Zeman F, Schmid C, Maier LS, Wagner S, Arzt M. Predictors of delirium after cardiac surgery in patients with sleep disordered breathing. *Eur Respir J* 2019: 54(2). - Oldenburg O, Wellmann B, Bitter T, Fox H, Buchholz A, Freiwald E, Horstkotte D, Wegscheider K. Adaptive servo-ventilation to treat central sleep apnea in heart failure with reduced ejection fraction: the Bad Oeynhausen prospective ASV registry. *Clin Res Cardiol* 2018: 107(8): 719-728. - 55. Flint AC, Conell C, Ren X, Banki NM, Chan SL, Rao VA, Melles RB, Bhatt DL. Effect of Systolic and Diastolic Blood Pressure on Cardiovascular Outcomes. *N Engl J Med* 2019: 381(3): 243-251. - 56. Kjeldsen SE. Hypertension and cardiovascular risk: General aspects. *Pharmacol Res* 2018: 129: 95-99. - 57. O'Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ, Benjafield AV, Woehrle H, Blase AB, Lindenfeld J, Oldenburg O. Cardiovascular Outcomes With Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure: The CAT-HF Trial. *J Am Coll Cardiol* 2017: 69(12): 1577-1587. - 58. Hastings PC, Vazir A, O'Driscoll DM, Morrell MJ, Simonds AK. Symptom burden of sleep-disordered breathing in mild-to-moderate congestive heart failure patients. *Eur Respir J* 2006: 27(4): 748-755. - 59. Rao A, Georgiadou P, Francis DP, Johnson A, Kremastinos DT, Simonds AK, Coats AJ, Cowley A, Morrell MJ. Sleep-disordered breathing in a general heart failure population: relationships to neurohumoral activation and subjective symptoms. *J Sleep Res* 2006: 15(1): 81-88. - 60. Gershon AS, Lindenauer PK, Wilson KC, Rose L, Walkey AJ, Sadatsafavi M, Anstrom KJ, Au DH, Bender BG, Brookhart MA, Dweik RA, Han MK, Joo MJ, Lavergne V, Mehta AB, Miravitlles M, Mularski RA, Roche N, Oren E, Riekert KA, Schoenberg NC, Stukel TA, Weiss CH, Wunsch H, Africk JJ, Krishnan JA. Informing Healthcare Decisions with Observational Research Assessing Causal Effect. An Official American Thoracic Society Research Statement. *Am J Respir Crit Care Med* 2021: 203(1): 14-23. # **ONLINE SUPPLEMENT** Registry on the treatment of central and complex sleep-disordered breathing with adaptive servo-ventilation (READ-ASV): study protocol and cohort profile Michael Arzt¹, Oliver Munt², Jean-Louis Pépin³, Raphael Heinzer⁴, Raphaela Kübeck⁵, Daniela Ehrsam-Tosi⁶, Adam Benjafield⁷, Holger Woehrle⁸ for the READ-ASV investigators ¹Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany ²ResMed Science Centre, Martinsried, Germany ³Pôle Thorax et Vaisseaux, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France ⁴Centre d'Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland ⁵The Clinical Research Institute, Munich, Germany ⁶ResMed Science Centre, Basil, Switzerland ⁷ResMed Science Center, Sydney, NSW, Australia ⁸Sleep and Ventilation Center Blaubeuren, Ulm, Germany # **READ-ASV Registry Steering Committee** Michael Arzt (Germany), Holger Woehrle (Germany), Jean-Louis Pepin (France), Raphael Heinzer (Switzerland), Adam Benjafield (Australia) # **Study Statistician** Ulrike von Hehn (Germany) # **Study Data Management** CRI – The Clinical Research Institute (Germany) # **Study Centers and Investigators** | Site | Investigator(s) | City | Country | |--------------------------|-----------------------------------|---------------|---------| | Universitätsklinikum | Prof. Dr Michael Arzt | Regensburg | Germany | | Regensburg | | | | | Schlaf- und | Holger Woehrle | Blaubeuren | Germany | | Beatmungszentrum | | | | | Blaubeuren | | | | | Hospitalverbund Klinikum | Prof Dr Christian Schumann | Kempten | Germany | | Kempten | | | | |
Universitätsklinikum | Dr Andreas Benz, Dr Mavi | Heidelberg | Germany | | Heidelberg | Schellenberg | | | | Klinikum Nürnberg | Dr Dora Trichè | Nürnberg | Germany | | Praxis Dr Stolpe | Dr Christoph Stolpe | Ibbenbüren | Germany | | Universitätsklinikum | Dr Armin Steffen, Dr Markus Daerr | Lübeck | Germany | | Schleswig-Holstein | | | | | Praxisnetz Westfalen | Dr Matthias Waltert, Dr Albert | Warendorf | Germany | | (Waltert/Esselmann) | Esselmann | | | | Fachkrankenhaus Kloster | Dr Dominic Dellweg, Dr Jens Kerl | Schmallenberg | Germany | | Grafschaft | | | | | Christophorus-Kliniken | Dr Matthias Weinrich | Dülmen | Germany | |------------------------------|-----------------------------------|-----------------|-----------| | Dülmen | | | | | Karl-Hansen-Klinik | Dr Dieter Specht | Bad Lippspringe | Germany | | Marienkrankenhaus Soest | Dr Matthias Elbers, Dr Volker | Soest | Germany | | | Trueten | | | | Evengelisches Krankenhaus | Dr Martina Neddermann | Herne | Germany | | Herne-Eickel | | | | | Universitätsmedizin | Prof. Dr Christoph Schoebel | Essen | Germany | | Ruhrlandklinik Essen | | | | | Klinikum Landshut | Dr Reinhard Zimmermann, Dr Elena | Landshut | Germany | | | Riu-Torrente | | | | Lungenklinik Hemer | Dr Michael Westhoff | Hemer | Germany | | Praxis für Lunge, Herz und | Dr Markus Gernhold | Bielefeld | Germany | | Schlaf Bielefeld | | | | | Klinikum Karlsruhe | Dr Matthias Berger | Karlsruhe | Germany | | Klinik für Schlafmedizin | Dr Hartmut Grueger | Düsseldorf | Germany | | Grand Arc Düsseldorf | | | | | Odense Universitetshospital | Prof. Dr Michael Sprehn | Odense | Denmark | | Sjællands | Prof. Dr Preben Homøe, Dr Lisbeth | Køge | Denmark | | Universitetshospital | Jensen | | | | University Hospital of | Prof. Dr Raphael Heinzer | Lausanne | Switzerla | | Lausanne | | | nd | | Inselspital Bern | Dr Anne-Katrin Brill | Bern | Switzerla | | | | | nd | | University Hospital de Santa | Prof. Dr Paula Pinto | Lisboa | Portugal | | Maria | | | | | Hospital Sao Joao | Prof. Dr Marta Drummond | Porto | Portugal | | Hospital Clinic | Dr Cristina Embid | Barcelona | Spain | | Hospital de Cruces | Dr Valentin Cabriada | Baracaldo | Spain | | Hospital General de Asturias | Dr Gemma Rubinos | Oviedo | Spain | | Centre Hospitalier | Prof. Dr Renaud Tamisier | Grenoble | France | | Universitaire Grenoble Alpes | | | | Figure S1. Proportion of patients (overall and by indication subgroup) who had a Pittsburgh Sleep Quality Index (PSQI) score >5 (based on 374 patients with available data). CSA, central sleep apnoea; CSA-CVD, central sleep apnoea in cardiovascular disease; OSA, obstructive sleep apnoea; TE-CSA, treatment-emergent or persistent central sleep apnoea. The circles at the bottom of the columns indicate the size of the respective subgroup (n=number). **Figure S2.** EuroQol-5-Dimension Scale (EQ-5D) index (**A**) and visual analogue scale (VAS) scores (**B**), overall and by indication subgroup. Higher VAS scores indicate better quality of life. **Table S1.** Polygraphy/polysomnography findings for the study population by patient sex | Females | Males | p-value | |------------|---|--| | 48±24 (99) | 49±22 (595) | 0.271 | | 11±16 (78) | 14±14 (498) | <0.001 | | 16±16 (88) | 15±16 (503) | 0.482 | | 7±10 (51) | 9±11 (383) | 0.098 | | 21±15 (98) | 19±14 (565) | 0.075 | | | 48±24 (99)
11±16 (78)
16±16 (88)
7±10 (51) | 48±24 (99) 49±22 (595)
11±16 (78) 14±14 (498)
16±16 (88) 15±16 (503)
7±10 (51) 9±11 (383) | Values are mean ± standard deviation (number of patients with data). AHI, apnoea-hypopnoea index; CAI, central apnoea index; HI, hypopnoea index; MAI, mixed apnoea index; OAI, obstructive apnoea index. Table S2. Quality of life and symptom burden for the study population by patient sex | Parameter | Females | Males | p-value | |--|-----------------|-----------------|---------| | FOSQ score | 15.3±3.8 (102) | 16.9±2.8 (654) | <0.001 | | ESS score | 9.8±6.1 (98) | 8.7±4.8 (622) | 0.138 | | PSQI score | 10.9±4.0 (40) | 8.1±4.0 (293) | <0.001 | | EQ-5D index | 0.60±0.33 (66) | 0.81±0.22 (472) | <0.001 | | EQ-5D health today, VAS score | 53.8±19.2 (102) | 63.8±19.0 (638) | <0.001 | | FOSQ score <17.9 or ESS score >10, n (%) | 103 (74%) | 633 (60%) | 0.008 | | Sleep onset latency | 36±35 (48) | 25±33 (315) | 0.006 | Values are mean ± standard deviation (number of patients with data), or number of patients (%). EQ-5D, EuroQol-5-Dimension Scale; ESS, Epworth Sleepiness Scale; FOSQ, Functional Outcomes of Sleep Questionnaire; PSQI, Pittsburg Sleep Quality Index; VAS, visual analogue scale. Figure S2 A EuroQoL 5-Dimension Index Figure S2 B EuroQoL 5-Dimension Visual Analogue Scale